简介:摘要:时间序列预测是对已有的时间序列数据进行分析,挖掘时间序列数据中蕴藏的信息,并对未来进行预测。时间序列预测具有极其重要的理论意义与现实意义,学者们为此做了大量的研究工作并取得了很好的成果。本文主要对时间序列预测的相关方法进行整理归纳,对时间序列预测相关研究进行述评。
简介:EXce1在办公自动化中的应用是众所周知的,但一提到统计分析软件,人们都会理所当然地想到statistic、Spss、SAS等,谁也不会把Excel牵扯进来。在人们眼里,似乎Excel只能求简单的均值、方差等,而登不了统计分析的大雅之堂。其实,据有关资料表明,Excel可以实现90%以上的统计分析功能,而且简便易行。下面我们就以时间数列分析入手,观察一下Excel是怎样剔除不规则变动(I),长期趋势(T),季节变动(S),来显示出循环波动(C),希望对统计工作者有一定借鉴作用。资料如下:(表1-1)解题思路:首先,由于原始数据(Yt)为季节资料,应对它进行4项移动平均(Mt)来分离出长期趋势
简介:摘要:最近出现的像物联网和大数据这样的尖端计算技术,导致了一个可以生成、收集和利用大规模数据的新时代。现在不仅可以更容易地获得数据量,而且还可以获得以前难以获得的信息和知识。在不同的领域,如能源、气候、经济、商业和医疗保健,由于数据采集故障、传输过程异常、机器运行中的设备故障等等原因,导致在这些领域往往存在数据部分缺失的问题。缺失的值被认为是数据分析中的主要障碍,因为它们扭曲了数据的统计特性,减少了可用性。缺失的值不仅会破坏原始数据分布的完整性和平衡性,而且还会影响相关场景的后续分析和应用,因此时间序列中缺失值的处理已经成为一个非常重要的问题,同时时间序列数据在数据挖掘和分析中具有重要的价值。