简介:整数阶常微分方程的古典解法特征根方法对于分数阶常微分方程能不能适用?通过分数阶导数的积分下限取-∞,证明了指数函数f(t)=eπ的Riemann-Liouville型α阶导数为raert从而对Riemann-Liouville型分数阶非齐次常微分方程可以通过特征根方法求得它的通解。分数阶常微分方程在通解中所含的相互独立的任意常数个数与一般传统的整数阶微分方程的规律不同,但却能相容的。
简介:给出了求一类高阶非齐次线性微分方程(组)特解的矩阵解法.即由对应齐次微分方程(组)的n个特解以及非齐次微分方程(组)的自由项构成某线性方程组的增广矩阵,并对该增广矩阵进行初等行变,换,即可求得非齐次微分方程(组)特解的一种简便方法.
简介:摘要本文通过换元法对常系数非齐次线性微分方程进行求解,丰富了常系数非齐次线性微分方程的求解方法,且该方法适用于更多形式的非线性项的微分方程。
简介:本文利用两个变量乘积的微分公式,推导出一类一阶线性非齐次微分方程的通解公式.利用该公式解此类微分方程,仅需运用一般的积分计算技巧对微分方程的自由项求积分即可.与常数变易法的繁琐计算相比,该公式十分方便快捷.
简介:讨论Banach空间X上二阶抽象微分方程d^2/(dr^2)u(t,x)=Au(t,x);u(0,x)=x,d/(dt)u(0,x)=0,x∈X的不适定情况,这里A是X上的闭算子;引进空间Y(A,k),即使得二阶抽象微分方程有次弱解v(t,x),且满足esssup{(1+t)^-k|d/(dt)〈v(t,x),x^*〉|:t≥0,x^*∈X^*,|x^*‖≤1}〈+∞的x∈X的全体,及空间H(A,ω),即使得二阶抽象微分方程有次弱解v(t,x),且满足的x∈X的全体.证明了如下结论:Y(A,k)和H(A,ω)均为Banach空间,且Y(A,k)和H(A,ω)均连续嵌入X;A在Y(A,k)上的限制算子A|Y(A,k)生成一个一次积分Cosine算子函数{(t))t≥0,满足limh→0+^-1/h‖C(t+h)-C(t)‖Y(A,k)≤M(1+t)^k,任意t≥0;A在H(A,ω)上的限制算子A|H(A,ω)生成一个一次积分Cosine算子函数{C(t)}t≥0,满足limh→0+^-1/h‖C(t+h)-C(t)‖H(A,ω)≤≤Me^ωt,任意t≥0.