学科分类
/ 25
500 个结果
  • 简介:掌纹特征提取是掌纹识别中最关键的一个环节,特征提取算法的好坏很大程度上决定了系统的识别率和效率的高低.结合近年来发表的文献,按照分析和描述的方式对掌纹的特征提取方法进行了分类,并对主要特征提取算法进行了分析和特性比较,最后总结了掌纹多特征融合方法是未来掌纹特征提取方法进一步的研究方向.

  • 标签: 掌纹识别 掌纹特征提取 多特征融合 综述
  • 简介:摘要滚动轴承发生故障时,振动信号各频带的能量会相应发生变化,各频带信号的能量中包含了丰富的故障信息。采用小波包对信号进行分解,并用小波包能量法对其分析。不同频带内的信号能量变化反映了运行状态的改变,根据不同的能量变化,可以有效对轴承信号进行故障诊断。

  • 标签: 小波包 能量法 故障诊断
  • 简介:纹理分割领域一直是非常活跃的领域,各种纹理分割算法纹理特征提取方法层出不穷。本文着重介绍了各类纹理特征特征提取方法以及分割技术,主要包括:基于算子的图像特征提取,基于统计方法的特征提取,基于模型方法的分割技术(分形模型,随机场模型),基于纹理结构的特征提取及分割方法,以及基于空频域特征的分割技术(小波技术)。

  • 标签: 纹理特征 灰度共现矩阵 边缘强度 边缘方向 分裂-合并 纹理边缘
  • 简介:摘要首先分析Relax特征提取原理,然后将Costas跳频编码信号的回波转化为AR模型,最后利用Relax算法实现超分辨,实验结果表明利用Relax算法完全可以实现Costas信号的特征提取

  • 标签: RELAX COSTAS 特征提取 AR模型
  • 简介:摘 要:雷达数据处理依靠先进的特征提取技术来增强信号分析。研究从预处理、信号处理、目标检测与跟踪三个层面讨论雷达数据预处理问题,从统计特征、频谱特征、时间频率特征三个层面讨论雷达数据特征提取问题,旨在通过研究进一步推动提升雷达数据处理能力,充分挖掘雷达系统性能,为有关从业者提供参考信息。

  • 标签: 雷达数据 处理 特征提取 
  • 简介:摘 要:通常我们所了解的人脸识别算法是指将人的五官特征或者局部特征经过图像处理,上传到系统后端,再和数据库的人脸照片进行比对,最终识别出所需要的类别。人脸识别算法比较广泛应用于监控、公安系统、考试系统、门禁检查、身份识别等领域,而基于特征提取的人脸识别算法是人脸识别系统中的关键部分,接下来我们将通过本文了解一下关于人脸识别算法的特征提取需要注意的事项。

  • 标签: 人脸识别 特征提取 注意事项 问题思考
  • 简介:CI作为主变换装置中牵引传动系统的主要部件,性能质量是安全运营的关键点.在对设备进行检修时,必须对牵引变流器发生的故障进行分析、记录,深入分析原因和方法,提出了以变流器输出电流作为故障特征参数的方法,提高故障判断处理的效率,已达到提高运营管理的目的.

  • 标签: 牵引变流器 故障诊断 研究
  • 简介:人脸识别作为身份识别的重要技术之一,已经开始广泛应用到人们的日常生活。人脸特征提取方法--主成分分析(PCA)可以在提取样本特征的同时降低样本维数,在此基础上提出的白化主成分分析(WPCA)可以降低图像中相邻像素的相关性,核主成分分析(KPCA)能够更好地提取适合分类的特征。本文主要分析了在不同光照和噪声情况下,三种常用的人脸特征提取方法—主成分分析(PCA)、白化主成分分析(WPCA)、核主成分分析(KPCA)均采用最近邻分类方法进行识别所用时间和识别率。

  • 标签: 人脸识别 PCA WPCA KPCA 最近邻分类
  • 简介:垃圾邮件处理作为一种典型的文本分类应用问题,受到高维数据的困扰。为提高垃圾邮件检测的效率和准确率,提出一种基于PLS特征提取和SVM的入侵检测算法,首先对原始垃圾邮件数据利用偏最小二乘算法降低维度,再采用遗传算法寻优转换特征子集,并通过支持向量机SVM进行分类。Matlab仿真实验表明,本算法能有效降低数据维数,提高检测的准确率。

  • 标签: PLS算法 SVM算法 垃圾邮件检测 特征提取
  • 简介:摘要:特征提取是对原始数据关键特征的表达,能凸显原始数据的主要信息,避免和非主要信息产生“等价”变换,而弱化了主要信息价值。对于时间序列的电池组数据,设计基于注意力机制的时间序列特征提取算法,从而快速地对采集的数据进行有效降维与压缩。

  • 标签: 电池数据 特征提取 降维
  • 简介:特征检测算法是图像匹配及物体识别的基础,本文介绍了四种局部特征检测技术:Kaze、Sift、Surf、Orb以及通过一些评价指标比较了它们匹配性能。主要从匹配率,正确匹配率,检测特征关键点速度三个方面进行了比较,实验结果表明:Kaze具有较好的鲁棒性,对光照、模糊的不变性最好,Sift也有较好的鲁棒性,对旋转、尺度有很好的不变性。Sift和Kaze各有侧重点,Surf综合性能一般,但是比前两种速度快,Orb对尺度没有不变性,速度最快。

  • 标签: 局部特征 Kaze SIFT SURF ORB 匹配率
  • 简介:摘要:目标行为特征提取是计算机视觉和行为分析领域的重要任务之一。本研究基于深度学习方法,探索了对目标行为特征进行有效提取的方法。首先,我们回顾了深度学习在计算机视觉任务中的成功案例,并分析了深度学习在目标行为分析和行为识别中的优势。接着,我们概述了基于深度学习的目标行为特征提取方法,并讨论了深度学习模型在这一领域中的应用现状、优势和局限性。我们还比较和评估了不同的深度学习模型,探讨了它们在目标行为特征提取方面的性能差异。在模型设计方面,我们介绍了模型架构和网络结构设计、数据预处理和标注方法、损失函数和训练策略,以及模型参数调优和优化方法。最后,我们进行了实验和评估,通过比较不同模型在目标行为特征提取任务上的表现,验证了深度学习在该领域的有效性和潜力。本研究的结果对于改进目标行为特征提取方法、推动计算机视觉和行为分析的发展具有重要意义。

  • 标签: 目标行为特征提取 深度学习 计算机视觉 行为分析
  • 简介:在社会经济高速发展的时代,智能交通系统的应用越来越普及。其中,车牌识别已经成为研究的热点。本文提出了一种基于模板匹配的车牌字符识别方法,对车牌中汉字和数字字母的特征提取进行了研究,并根据提取的字符特征利用模板匹配的方法对车牌字符进行识别。实验结果表明,该方法对车牌字符具有良好的识别效果.

  • 标签: 智能交通 车牌识别 模板匹配 特征提取
  • 简介:摘要本文采用共生矩阵的方法提取多幅异常肝脏CT图像的感兴趣区域(regionofinterest,ROI)的纹理特征,对两种病变肝脏组织——肝囊肿和肝细胞癌,以及正常肝脏进行纹理分析,对比得出。结论异常肝脏组织的纹理比较粗,比较杂乱且模糊,而正常肝脏组织的纹理比较规则;肝囊肿组织较肝细胞癌组织局部纹理更相似、更均匀而肝细胞癌局部纹理更杂乱。

  • 标签: 纹理特征 灰度共生矩阵 肝囊肿 肝细胞癌
  • 简介:真皮纹理的复杂性和分类规则的不明确,导致采用人工肉眼判定皮革纹理的分类方式误差大,效率低。皮革表面具有粗细皱痕和色泽差异,加之成像过程受到光照条件影响,皮革图像融合了细节纹理和主干纹理。本文首先对皮革图像进行预处理,在此基础上利用总变差模型消隐细节纹理,重绘出皮革纹理图,采用局部二值方差模式(LBP-V)算法构建皮革纹理图像的图谱直方图作为后期皮革判定的依据。该方法的运用,能够准确地提取出皮革图像的纹理信息,有望解决了目前人工判定的难题。

  • 标签: 真皮 纹理 LBP—V 特征 图像
  • 简介:摘要:本期刊文章研究了图像特征提取与分类识别的方法。文章旨在提供关于图像特征提取和分类识别领域的详细方法,以帮助研究人员更好地理解和应用这些技术。通过各个章节的阐述,详细介绍与该主题相关的不同方法和技术,强调了它们的应用和优点。

  • 标签: 图像特征提取 分类识别 方法 技术
  • 简介:在机械故障智能诊断过程中,提取反映机器状态的有效特征参量时要花费大量的时间和精力,而且这种依靠人的经验来提取特征参量的方法有一定的盲目性。为了解决如何尽可能快而有效地寻找一组特征参量,使诊断对象不同状态之间的可分性为最佳的问题,采用了K—L变换特征提取方法,研制出相应的软件,并已将该方法应用在大庆油田抽油机减速箱智能故障诊断系统中。

  • 标签: 特征提取 K—L变换 自动识别
  • 简介:针对高分辨雷达目标散射回波的非平稳特性,提出了利用Hilbert—Huang变换进行时频分析获得目标特性的方法。首先利用简单电磁散射模型仿真了三类目标的一维距离像,然后采用Hilbert—Huang变换对各类目标在不同姿态角下的回波进行时频分析,提取时频分布图的边际谱作为目标特征矢量,利用径向基函数神经网络分类器对特征矢量进行训练和学习,最后对三类目标作了识别,仿真对比实验验证了该方法的有效性。

  • 标签: Hilbert- Huang变换 一维距离像 特征提取 分类
  • 简介:Gabor滤波器的参数设计是Gabor特征提取过程中的一个重要环节。根据坦克的外形特,最及对方向的敏感性对其进行了针对性的参数设置,实验结果证明得到了很好的滤波效果。根据Gabor核函数的窗口特性,提出了一种自适应的基于Gabor滤波器的特征提取算法。该算法应用Gabor滤波器的多尺度特性与样本图像进行卷积,对Gabor域响应进行局部极大值提取,经过该方法得到的特征点有效地减少了数据冗余,并且具有较好的图像表征能力。

  • 标签: GABOR滤波 参数设置 Gabor核函数 特征提取
  • 简介:基于DiagPCA(对角主成分分析)及平均脸的方法对二维主成分分析(2DPCA)方法进行了改进,既考虑到构造2DPCA训练样本人脸间散布矩阵时使特征最大化,减少了同类人脸之间的特征差异,又利用图像矩阵对角化将图像的行、列关系联系起来,并利用ORL人脸数据库进行实验。结果显示,该方法可提高人脸识别率,且降低了特征提取的时间。

  • 标签: 二维主成分分析 特征提取 人脸识别 DiagPCA 对角平均脸