简介:设M是复流形,具有复(α,β)度量F=αφ(|β|/α),其中α为M上的Hermite度量,β为M上的(1,0)形式。本文得到与F相联系的复非线性联络系数Гiμ^i的表达式,且证明了:若β为M上的全纯(1,0)形式,并且关于α的Hermite联络γij^k(z)平行,则F是M上的复Berwald度量;若α是M上的Kaihler度量,则F是M上的强KahlerFinsler度量.
简介:TheWeylcurvatureofaFinslermetricisinvestigated.ThiscurvatureconstructedfromRiemannaincurvature.ItisanimportantprojectiveinvariantofFinslermetrics.TheauthorgivesthenecessaryconditionsonWeylcurvatureforaFinslermetrictobeRandersmetricandpresentsexamplesofRandersmetricswithnon-scalarcurvature.AglobalrigiditytheoremforcompactFinslermanifoldssatisfyingsuchconditionsisproved.ItisshowedthatforsuchaFinslermanifold,ifRicciscalarisnegative,thenFinslermetricisofRanderstype.
简介:随着对黎曼几何研究的深入,芬斯勒几何成为现代数学中的前沿学科。其中,包括为人们所熟知的Randers度量在内的(α,β)-度量是一类在多个学科领域都有着广泛应用的芬斯勒度量。程新跃与沈忠民在文献[1]中提出了一类重要的(α,β)-度量,其中包括了部分反正切度量、多项式度量和对数度量。经证明此类(α,β)-度量有着与对称(α,β)-度量相近的表达式,因此命名为拟对称(α,β)-度量。继旗曲率性质与S-曲率性质之后,文章主要讨论了拟对称(α,β)-度量成为Landsberg度量的等价条件,以及一些好的其它性质。