简介:Inthisnotewepresentaconstructiveproofofsymmetricaldeterminantalformulasforthenumeratoranddenominatorofanordinaryrationalinterpolant,considertheconfluencecaseandgivenewdeterminantalformulasoftherationalinterpolantbymeansofLagrange’sbasisfunctions.
简介:
简介:Asweknow,Newton'sinterpolationpolynomialisbasedondivideddiffer-enceswhichcanbecalculatedrecursivelybythedivided-differenceschemewhileThiele'sinterpolatingcontinuedfractionsaregearedtowardsdeterminingarationalfunctionwhichcanalsobecalculatedrecursivelybyso-calledinversedifferences.Inthispaper,bothNewton'sinterpolationpolynomialandThiele'sinterpolatingcontinuedfractionsareincorporatedtoyieldakindofbivariatevectorvaluedblendingrationalinterpolantsbymeansoftheSamelsoninverse.Blendingdifferencesareintroducedtocalculatetheblendingrationalinterpolantsrecursively,algorithmandmatrix-valuedcasearedis-cussedandanumericalexampleisgiventoillustratetheefficiencyofthealgorithm.
简介:Afamilyofpiecewiserationalquinticinterpolationispresented.Eachinterpolationofthefamily,whichisidentifieduniquelybythevalueofaparameterαi,isofC2continuitywithoutsolvingasystemofconsistencyequationsforthederivativevaluesattheknots,andcanbeexpressedbythebasisfunctions.InterpolantisofO(hr)accuracywhenf(x)?Cr[a,b],andtheerrorshaveonlyasmallfloatingforabigchangeoftheparameterαi,itmeanstheinterpolationisstablefortheparameter.Theinterpolationcanpreservetheshapepropertiesofthegivendata,suchasmonotonicityandconvexity,andaproperchoiceofparameterαiisgiven.
简介:Anrationalandeffectivefuzzychoicestrategytocompetitionandcooperation(C&C)fortwo-playercompetitivesituationsissubmittedinthispaper,whichcomputesplayer'stotalperformanceincludingbothabsoluteandrelativeperformanceandrepresentingtherelationbetweencooperationdegreeandtheobjectiveandsubjectivefactorsthattheyarefaced;analgorithmtothepracticalproblembasedonfuzzyoptimizingtechniqueisthenanalyzedstressinthefuzzysense,themethodcanbeusedfortheplayertoobtainarationalbehaviourunderthecompetitiveenvironment,somekeyfactorsforimplementationthedecisionmakingschemeareproposedtoo;finally,thesuggestedmethodisillustratedbyanumericalexample.Itprovidesusefulreferencemodelfortheplayertorealizerationaldecisionmakingstrategyundertheunceratintyenvironment.
简介:AnorthogonalsystemofrationalfunctionsisderivedfromthemappedLaguerrepolynomials,whichisusedfornumericalsolutionofsingulardifferentialequations.Amodelproblemisconsidered.Amultiple-stepalgorithmisdevelopedtoimplementthismethod.Numericalresultsshowtheefficiencyofthisnewapproach.
简介:FromthesurveyofcoastalresourcesandthefunctionalzoingofthemarineandcoastsalareasofShandongProvince,theauthorshavecollectedagooddeelofpracticaldata,andatthesametime,foundoutsomeirrationalphenomenaintheexploitationandutilizationofcoastalresources.TaKingthecoastalareaofShandongProvinceasanexample.Thispapermakesananalysisontherationalutilizationofcoastalresources.
简介:Efficientalgorithmsareestablishedforthecomputationofbivariatelacunaryvectorvaluedrationalinterpolantsbasedonthebranchedcontinuedfractionsandanumericalexampleisgiventoshowhowthealgorithmsareimplemented,
简介:In[3],akindofmatrix-valuedrationalinterpolants(MRIs)intheformofRn(x)=M(x)/D(x)withthedivisibilityconditionD(x)|‖M(x)‖2,wasdefined,andthecharacterizationtheoremanduniquenesstheoremforMRIswereproved.Howeverthisdivisibilityconditionisfoundnotnecessaryinsomecases.Inthispaper,weremovethisrestrictedcondition,definethegeneralizedmatrix-valuedrationalinterpolants(GMRIs)andestablishthecharacterizationtheoremanduniquenesstheoremforGMRIs.OnecanseethatthecharacterizationtheoremanduniquenesstheoremforMRIsarethespecialcasesofthoseforGMRIs.Moreover,bydefiningakindofinnerproduct,wesucceedinunifyingtheSamelsoninversesforavectorandamatrix.
简介:Avarietyofmatrixrationalinterpolationproblemsincludethepartialrealizationproblemformatrixpowerseriesandtheminimalrationalinterpolationproblemforgeneralmatrixfunctions.Severalproblemsincircuittheoryanddigitalfilterdesigncanalsobere-ducedtothesolutionofmatrixrationalinterpolationproblems[1—4].Bymeansofthereachabilityandtheobservabilityindicesofdefinedpairsofmatrices,Antoulas,Ball,KangandWillemssolvedtheminimalmatrixrationalinterpolationproblemin[1].Onthe
简介:LetιbeatriangulationofapolygonaldomainDR2withverticesV={v1:1≤i≤N,}andRSk(D,τ)={u∈Ck(D):(T∈τ,u|τisarationalfunction}.Thepurposeofthispaperistostudytheexist-enceandconstructionofCμ-rationalsplinefunctionsonanytriangulationτforCAGD.TheHermiteprob-lemHμ(V,U)={findu∈
简介:AnewkindofvectorvaluedrationalinterpolantsisestablishedbymeansofSamelsoninverse,withscalarnumeratorandvectorvalueddenominator.ItisessentiallydifferentfromthatofGraves-Morris(1983),wheretheinterpolantsareconstructedbyThiele-typecontinuedfractionswithvectorvaluednumeratorandscalardenominator.Thenewapproachismoresuitabletocalculatethevalueofavectorvaluedfunctionforagivenpoint.Andanerrorformulaisalsogivenandproven.