简介:LetGbeap-seriesgroupandΩbeacompactsubgroupofG.Letλ(x,r)andλ,(x,r)beA-belp-poissontypekernelandproducttypekernelOnΩrespectively.Inthispaperwediscusstheap-proximationpropertiesofsuchkernels,givetheestimate5oftheirmoments,obtainthedirectandin-verseapproximationtheorems.
简介:TheNeighborhoodPreservingEmbedding(NPE)algorithmisrecentlyproposedasanewdimensionalityreductionmethod.However,itisconfinedtolineartransformsinthedataspace.Forthis,basedontheNPEalgorithm,anewnonlineardimensionalityreductionmethodisproposed,whichcanpreservethelocalstructuresofthedatainthefeaturespace.First,combinedwiththeMercerkernel,thesolutiontotheweightmatrixinthefeaturespaceisgottenandthenthecorrespondingeigenvalueproblemoftheKernelNPE(KNPE)methodisdeduced.Finally,theKNPEalgorithmisresolvedthroughatransformedoptimizationproblemandQRdecomposition.Theexperimentalresultsonthreereal-worlddatasetsshowthatthenewmethodisbetterthanNPE,KernelPCA(KPCA)andKernelLDA(KLDA)inperformance.
简介:Integralcollisionkerneliselucidatedusingexperimentalresultsfortitania,silicaandaluminananoparticlessynthesizedbyFCVDprocess,andtitaniasubmicronparticlessynthesizedinatubefurnacereactor.Theintegralcollisionkernelwasobtainedfromaparticlenumberbalanceequationbytheintegrationofcollisionratesfromthekinetictheoryofdilutegasesforthefree-moleculeregime,fromtheSmoluchowskitheoryforthecontinuumregime,andbyasemi-empiricalinterpolationforthetransitionregimebetweenthetwolimitingregimes.Comparisonshavebeenmadeonparticlesizeandtheintegralcollisionkernel,showingthatthepredictedintegralcollisionkernelagreedwellwiththeexperimentalresultsinKnudsennumberrangefromabout1.5to20.
简介:Receiveroperatingcharacteristic(ROC)curvesareoftenusedtostudythetwosampleprobleminmedicalstudies.However,mostdatainmedicalstudiesarecensored.UsuallyanaturalestimatorisbasedontheKaplan-Meierestimator.InthispaperweproposeasmoothedestimatorbasedonkerneltechniquesfortheROCcurvewithcensoreddata.Thelargesamplepropertiesofthesmoothedestimatorareestablished.Moreover,deficiencyisconsideredinordertocomparetheproposedsmoothedestimatoroftheROCcurvewiththeempiricalonebasedonKaplan-Meierestimator.ItisshownthatthesmoothedestimatoroutperformsthedirectempiricalestimatorbasedontheKaplan-Meierestimatorunderthecriterionofdeficiency.Asimulationstudyisalsoconductedandarealdataisanalyzed.
简介:TheFFDalgorithmisoneofthemostfamousalgorithmsfortheclassicalbinpackingproblem.Inthispaper,someversionsoftheFFDalgorithmareconsideredinseveralbinpackingproblems.Especially,twoofthemappliedtothebinpackingproblemwithkernelitemsareanalyzed.Tightworst-caseperformanceratiosareobtained.
简介:Hyperspectralimageprovidesabundantspectralinformationforremotediscriminationofsubtledifferencesingroundcovers.However,theincreasingspectraldimensions,aswellastheinformationredundancy,maketheanalysisandinterpretationofhyperspectralimagesachallenge.Featureextractionisaveryimportantstepforhyperspectralimageprocessing.Featureextractionmethodsaimatreducingthedimensionofdata,whilepreservingasmuchinformationaspossible.Particularly,nonlinearfeatureextractionmethods(e.g.kernelminimumnoisefraction(KMNF)transformation)havebeenreportedtobenefitmanyapplicationsofhyperspectralremotesensing,duetotheirgoodpreservationofhigh-orderstructuresoftheoriginaldata.However,conventionalKMNForitsextensionshavesomelimitationsonnoisefractionestimationduringthefeatureextraction,andthisleadstopoorperformancesforpost-applications.Thispaperproposesanovelnonlinearfeatureextractionmethodforhyperspectralimages.Insteadofestimatingnoisefractionbythenearestneighborhoodinformation(withinaslidingwindow),theproposedmethodexplorestheuseofimagesegmentation.Theapproachbenefitsbothnoisefractionestimationandinformationpreservation,andenablesasignificantimprovementforclassification.Experimentalresultsontworealhyperspectralimagesdemonstratetheefficiencyoftheproposedmethod.ComparedtoconventionalKMNF,theimprovementsofthemethodontwohyperspectralimageclassificationare8and11%.Thisnonlinearfeatureextractionmethodcanbealsoappliedtootherdisciplineswherehigh-dimensionaldataanalysisisrequired.
简介:§1.IntroductionandMainResultLet(X,F)beaJBrXR'-valuedvector.AssumethatwhenX=xisgiven,thereexistsaconditionaldensityofYtobedenotedbyf(y[x),whichisaBorel-measurablefunctionof(x,y).Notethatwedonotassumetheexistenceofadensityfunctionof(X,F).Let(X-i,fi),—,(Xn,Fn)bei.i.d.samplesof(X,F).Ourpurposeistoestimatef(y\x)basedonthesesamples.Thisisaninterestingprobleminviewofeitherpuretheoryorpracticalapplications.MotivatedbytheideasuggestedinkernelandNNestimationsinthetheoryofnonparametricregressionanddensityestimates,thefirstauthorproposesthefollowingtwoclassesofestimatorsoff(y\x):
简介:Amajordifficultyinmultivariablecontroldesignisthecross-couplingbetweeninputsandoutputswhichobscurestheeffectsofaspecificcontrollerontheoverallbehaviorofthesystem.Thispaperconsiderstheapplicationofkernelmethodindecouplingmultivariableoutputfeedbackcontrollers.Simulationresultsarepresentedtoshowthefeasibilityftheproposedtechnique.
简介:Thekernelbasedtrackinghastwodisadvantages:thetrackingwindowsizecannotbeadjustedefficiently,andthekernelbasedcolordistributionmaynothaveenoughabilitytodiscriminateobjectfromclutterbackground.Forboostingupthefeature'sdiscriminatingability,bothscaleinvariantfeaturesandkernelbasedcolordistributionfeaturesareusedasdescriptorsoftrackedobject.Theproposedalgorithmcankeeptrackingobjectofvaryingscalesevenwhenthesurroundingbackgroundissimilartotheobject'sappearance.
简介:Previously,anovelclassifiercalledKernel-basedNonlinearDiscriminator(KND)wasproposedtodiscriminateapatternclassfromotherclassesbyminimizingmeaneffectofthelatter.Toconsidertheeffectofthetargetclass,thispaperintroducesanobliqueprojectionalgorithmtodeterminethecoefficientsofaKNDsothatitisextendedtoanewversioncalledextendedKND(eKND).IneKNDconstruction,thedesiredoutputvectorofthetargetclassisobliquelyprojectedontotherelevantsubspacealongthesubspacerelatedtootherclasses.Inaddition,asimpletechniqueisproposedtocalculatetheassociatedobliqueprojectionoperator.ExperimentalresultsonhandwrittendigitrecognitionshowthatthealgorithmperformesbetterthanaKNDclassifierandsomeothercommonlyusedclassifiers.
简介:象LTTng一样的踪迹工具作为与传统的调试器相比在跟踪软件上有很低的影响。为长跑,在抑制的资源和高产量环境,然而交换节点和生产服务器,例如嵌入的网络目标软件上的集体跟踪影响更加加起来。就以实行时间而且以要存储的数据的巨大的数量,开销没脱机被处理并且分析。这份报纸论述由介绍处理如此的巨大的踪迹数据产生的一个新奇方法一即时(JIT)过滤器基于跟踪系统为通过高频率事件的洪水的sieving,并且记录仅仅相关的那些,当一个特定的条件被满足时。与微小的过滤费用,用户能滤出仅仅兴趣的事件上的大多数事件和焦点。我们证明在某些情形,编的过滤器证明是三的JIT预定比类似的解释过滤器有效的更多。我们也证明与过滤器谓语和上下文变量的增加的数字,有一些JIT的JIT编译增加的好处编了比他们的解释对应物快甚至三倍的过滤器。我们进一步介绍新体系结构,用我们的过滤系统,它能启用在跟踪高效地分享数据的VM(虚拟机)的核和过程之间的合作跟踪。我们通过用户能动态地通过跟踪其效果在跟踪跟踪VM的核作决定的被反映的VM的userspace指定syscall潜伏的一种跟踪情形表明它的使用。我们在我们的分享的记忆系统上比较数据存取表演并且在为合作跟踪分享的传统的数据上显示出几乎100次改进。
简介:Thispaperpresentsasimplenonparametricregressionapproachtodata-drivencomputinginelasticity.Weapplythekernelregressiontothematerialdataset,andformulateasystemofnonlinearequationssolvedtoobtainastaticequilibriumstateofanelasticstructure.Preliminarynumericalexperimentsillustratethat,comparedwithexistingmethods,theproposedmethodfindsareasonablesolutionevenifdatapointsdistributecoarselyinagivenmaterialdataset.
简介:Withthevigorousexpansionofnonlinearadaptivefilteringwithreal-valuedkernelfunctions,itscounterpartcomplexkerneladaptivefilteringalgorithmswerealsosequentiallyproposedtosolvethecomplex-valuednonlinearproblemsarisinginalmostallreal-worldapplications.ThispaperfirstlypresentstwoschemesofthecomplexGaussiankernel-basedadaptivefilteringalgorithmstoillustratetheirrespectivecharacteristics.ThenthetheoreticalconvergencebehaviorofthecomplexGaussiankernelleastmeansquare(LMS)algorithmisstudiedbyusingthefixeddictionarystrategy.ThesimulationresultsdemonstratethatthetheoreticalcurvespredictedbythederivedanalyticalmodelsconsistentlycoincidewiththeMonteCarlosimulationresultsinbothtransientandsteady-statestagesfortwointroducedcomplexGaussiankernelLMSalgonthmsusingnon-circularcomplexdata.Theanalyticalmodelsareabletoberegardasatheoreticaltoolevaluatingabilityandallowtocomparewithmeansquareerror(MSE)performanceamongofcomplexkernelLMS(KLMS)methodsaccordingtothespecifiedkernelbandwidthandthelengthofdictionary.