简介:<正>Newkindsofstronglyzero-dimensionallocalesareintroducedandcharacterized,whicharedifferentfromJohnstone’s,andalmostallthetopologicalpropertiesforstronglyzero-dimensionalspaceshavethepointlosslocalicforms.Particularly.theStone-Cechcompactificationofastronglyzero-diluensionallocaleisstonglyzero-dimensional.
简介:让(*(M),d)为一个光滑的协议的deRhamcochain建筑群被关上尺寸n的manifoldsM。为奇怪度的关上的形式H,有扭曲的deRhamcochain建筑群(*(M),d+H<潜水艇class=“a-plus-plus”>)和它的联系扭曲的deRhamcohomologyH*(M,H)。作者证明那在那里存在一光谱顺序{Erp,q,dr}源于过滤\(F_p(*M,收敛到扭曲的deRhamcohomologyH,mega^*(M))=\mathop\oplus\limits_{i\geqslantp}\Omega^i(M)\)M,H)。这也被显示出differentials在光谱顺序能也以杯产品和Massey产品的特定的元素被给,它概括Atiyah和Segal的结果。关于differentials的不确定的一些结果也在这份报纸被给。
简介:In1971,thefamousmathematicianGeorgePolya,introducedfourbasicstepsorphasesforsolvingproblems:Step1UnderstandtheProblemStep2DecideonaPlanStep3CarryoutthePlanStep4LookBack
简介:
简介:Foranasymmetricmatrix,thezero-nonzeropatternPofentriescanbedescribedbyadigraphΓ(P)whichhasanarcifanentryisnonzero.Theminimumrankofazero-nonzeropatternisdefinedtobethesmallestpossiblerankoverallrealmatriceshavingthegivenzero-nonzeropattern.Definitionsofvariousgraphparametersthathavebeenusedtoboundminimumrankofazerononzeropattern,includingpathcovernumberandeditdistance,andthetrianglesizetri(P).Inthispaper,byconvertingadigraphintoanundirectedbipartitegraphG(U,V),wepresentanalgorithmforconstructingasub-bipartitegraphwiththeuniquemaximumperfectmatchingM',andobtainthattri(P)=|M'|forP.
简介:Anoverviewispresentedonthestatusofstudiesonmultiplecodesingeneticsequences.Indirectly,theexistenceofmultiplecodesisrecognizedintheformofseveralrediscoveriesofSecondGeneticCodethatisdifferenteachtime.Aduecreditisgiventoearlierseminalworkrelatedtothecodesoftenneglectedinliterature.Thelatestdevelopmentsinthefieldofchromatincodearediscussed,aswellasperspectivesofsingle-baseresolutionstudiesofnucleosomepositioning,includingrotationalsettingofDNAonthesurfaceofthehistoneoctamers.
简介:LetXbeaBanachspaceand{ej}j=1beasequenceinX.Theauthorshowse∞that{ej}∞j+1isabasicsequenceifandonlyif∑n∞=1rnαnjconvergesforeveryj>1ande∞-∞∞e∑∞n=1rn∑∞j=1αnjej=∑j=1(∑∞n=1rnαnj)jholdsforeverychoiceofscalarvariables{αnj}suchthat∑∞n=1αnjejconvergesforeachn>-1andanychoiceofscalarvariables{rn}suchthat∑∞n+1∑∞f=1rnαnjejconverges.Moreover,someapplicationsabouttheresultaregiven.