简介:通过对贮藏2~20年的378份中期库小麦种质进行生活力测定(每一贮藏年份测定种质份数为10~30),结果表明贮藏年限为2~12年的种质平均发芽率都高于83%,而贮藏年限为15年的种质平均发芽率已降至20%,这表明小麦种质在中期库贮藏过程中,生活力丧失存在着骤降特性.同时对同一品种分别来自中期库低活力和长期库高活力种质进行田间出苗率和农艺性状调查,发现中期库种质的室内发芽率与田间出苗率相关极显著,其相关显著性高于长期库种质,且不论是来自中期库低活力种质还是长期库高活力种质,总体上田间出苗率都比室内发芽率低20%以上,在子一代种子的农艺性状上两者之间无显著差异.
简介:LEAFY(简称LFY)是植物花分生组织特征基因,在植物由营养生长向生殖生长转变过程中起着重要作用,是启动开花的枢纽。菲油果是一种新兴的果树资源,为研究菲油果LFY基因(FsLFY)的表达调控规律,本研究通过实时荧光定量PCR技术研究了FsLFY基因的时空表达模式,并通过染色体步移技术克隆了该基因的启动子序列。荧光定量PCR结果表明,FsLFY基因在菲油果花蕾不同发育阶段以及其他组织器官中均有表达。在花蕾中,小蕾期最高,中蕾期最低;组织器官中,营养枝茎段最高,花瓣最低。FsLFY基因启动子序列长度为2436bp(GenBank登录号:KF766536),运用PLACE、PlantCARE等在线软件对其序列进行顺式作用元件分析,结果显示该序列不仅含有CAAT-box、TATA-box等核心启动子元件,而且还具有响应水分、光、赤霉素(GA)以及其他功能未知的顺式调控元件,表明FsLFY基因的表达受多种外界环境条件的调控。本研究为阐明菲油果的开花机理,以及通过分子育种手段使菲油果早花早果奠定了理论基础。
简介:锚蛋白重复序列模体是生物体内最普遍的蛋白质序列模体之一,在多种细胞活动中主要介导蛋白质-蛋白质的相互作用。本研究利用菜豆基因组数据库,通过生物信息学手段对菜豆ANK家族成员及分子生物学特性进行了鉴定。结果显示,菜豆基因组中含有30个ANK家族基因,分布于9条染色体上,其中第5条染色体上含有的ANK基因最多,包含13个基因。蛋白结构域分析发现,ANK25除了含有ANK结构域外还含有RING结构域。亚细胞定位结果显示,ANK25主要分布在细胞膜上。表达模式分析发现,ANK25对干旱、盐和ABA胁迫有响应。本研究为进一步研究菜豆ANK的分类及功能提供了有利的依据。
简介:白念珠菌感染机体后,机体首先通过固有免疫系统来发挥抗真菌作用,模式识别受体是固有免疫细胞用于识别PAMPs的分子,其中Toll样受体和C型凝集素家族是识别白念珠菌的主要PRR。这两类受体被激活后,会通过信号通路启动机体固有免疫和适应性免疫系统,诱导相关细胞因子的产生,募集巨噬细胞、中性粒细胞等吞噬细胞来杀灭白念珠菌,同时,还可传递相关信号诱导,11111、Th2、Thl7和Treg等适应性免疫细胞的活化,通过体液免疫和细胞免疫来发挥抗真菌作用,对模式识别受体与白念珠菌相互作用机制的研究对临床真菌病的免疫调节和治疗具有重要意义。
简介:对用固相扣除杂交方法从低温驯化沙冬青克隆得到的AmLEA5基因进行表达模式分析和生物信息学分析,表明该基因编码一种第5族胚胎发育晚期丰富蛋白(LEA),全长693bp,含有1个297bp的开放阅读框,编码98个氨基酸,预测Am-LEA5的分子量为10.6kDa,是一种亲水性蛋白,有多个磷酸化位点。密码子偏好性分析表明该基因略偏好于用A或T结尾的密码子。系统发生分析表明,AmLEA5蛋白与蒺藜苜蓿LEA(ACJ84182.1)亲缘关系最近。qRT-PCR结果显示AmLEA5的表达量在低温、干旱、盐和热胁迫条件下均有上调,尤其在低温胁迫后期富集量最高。亚细胞定位表明,用YFP标记的AmLEA5位于细胞质和细胞核内。一系列试验结果表明AmLEA5基因在沙冬青抵御非生物胁迫,尤其是在抵御低温胁迫机制中发挥重要作用。
简介:应用近红外反射光谱技术(NIRS)采集807份羽衣甘蓝种子光谱数据,然后挑选250份材料,用经典化学方法测试种子油含量和饼粕蛋白质含量。通过偏最小二乘法(PLS)、改良最小二乘法(MPLS)和不同光谱散射及数学处理技术来建立NIRS定量分析数学模型。种子油含量和饼粕蛋白质含量模型的交叉检验相关系数(1-VR)分别为0.9180、0.9062,交叉检验标准差(SECV)分别为1.0606、0.8720,校正标准差(SEC)分别为0.9267、0.8119。两种模型的外部检验相关系数(RSQ)分别为0.949、0.915,相对误差分别小于3.60%、2.70%,预测标准差(SEP)分别为0.881、0.779,检验偏差(BIAS)均较小分别为-0.054、-0.062。研究表明:这两个数学模型的分析结果具有较高的精确度,在品质育种中具有较好的应用前景。
简介:利用高效液相色谱法和实时定量PCR方法,分别测定了2个异黄酮含量显著差异的大豆品种鲁黑豆2号(LHD2)和南汇早黑豆(NHZ)在子粒发育过程中的异黄酮含量变化以及异黄酮合成相关酶基因的表达模式变化,试图分析异黄酮积累与各基因表达量变化的相关关系。结果表明在大豆子粒发育过程中,异黄酮含量逐渐升高,而不同异黄酮合成相关酶基因的表达趋势不同,CHS7、CHS8、CHR、CHI1A和IFS2的表达趋势与异黄酮积累模式基本一致,而IFS1和CHI1B1的表达趋势与异黄酮积累模式相反。IFR的表达模式在2个大豆品种中存在相反的趋势,在LHD2中与异黄酮组分积累趋势相反,而在NHZ中与异黄酮组分积累趋势相同。结果还表明,同一基因家族中不同基因在子粒发育过程中的表达量也存在差异。查尔酮合酶基因家族中CHS7和CHS8以及查尔酮异构酶基因家族的CHI1A的表达水平相对其他成员较高,异黄酮合酶基因家族中IFS2的表达量显著高于IFS1的表达量,预示这些基因家族在大豆子粒异黄酮积累过程中存在功能分化。此外,各基因表达模式与异黄酮积累的相关分析结果表明,不同基因表达模式与异黄酮积累的相关性在2个品种中也不尽相同。LHD2中CHS7、CHS8和IFS2在子粒发育过程中的表达量变化与不同异黄酮组分呈显著正相关,CHI1B1基因的表达量变化与不同异黄酮组分呈显著负相关。而在NHZ中,IFR在子粒发育过程中的表达量变化与多个异黄酮组分呈显著正相关。这预示了不同大豆品种异黄酮含量差异的潜在遗传基础。各异黄酮合成相关酶基因表达量变化的相关分析表明,在2个品种中,苯丙氨酸水解酶PAL1与4CL,4CL与CHS2以及CHS1与IFS2基因的表达量均呈现显著正相关。表明这些基因可能通过协同作用共同调控异黄酮的合成与积累。这些结果为今后利用基因工程提高大豆异黄酮含量奠定了基�