简介:用电化学阳极氧化法制备了一定孔隙率的多孔硅样品,然后用脉冲激光沉积法以PS为衬底生长一层ZnS薄膜.用X射线衍射仪、扫描电子显微镜和荧光分光光度计分别表征了ZnS薄膜的结构、形貌和ZnS/PS复合膜的光致发光性质.XRD结果表明,制备的ZnS薄膜沿G—ZnS(111)方向择优生长,结晶质量良好,但衍射峰的半峰全宽较大;SEM图像显示,ZnS薄膜表面出现一些凹坑,这是衬底PS的表面粗糙所致.室温下的光致发光谱表明,沉积ZnS薄膜后,PS的发光峰蓝移.把ZnS的蓝绿光与PS的橙红光叠加,在可见光区450~700nm形成了一个较宽的光致发光谱带,ZnS/PS复合膜呈现较强的白光发射.
简介:目的观察丝素蛋白多孔支架(PorousSilkFibroinScaffolds,PSFSs)在大鼠脊髓损伤部位的血管化,为丝素蛋白材料用于组织工程修复中枢神经损伤提供实验依据。方法制备具有一定孔径和孔隙率的PSFSs;选取28只清洁级雌性S-D大鼠(体重250~300g),随机分为A、B两组(A为实验组,n=16;B为对照组,n=12)。建立脊髓半横断损伤模型,实验组植入PSFSs,对照组植入聚乙烯醇(PolyvinylAlcohol,PVA)海绵。术后4、7、10、14、21、28d,每组各取两只大鼠灌注取材行组织学、免疫组织化学(CD34)检测,并采用透射电镜观察A组微血管超微结构。结果HE染色示A组炎症反应较B组轻、消退速度快;PSFSs降解速度比PVA快;通过CD34染色计数材料内微血管密度(MVD),A组在术后7、10、14、21、28d分别为1.4、3.6、10.6、8.6、8.8,对照组分别为0、2.2、4.8、4.6、4.0,差异具有统计学意义(P<0.05)。A组在术后7d即可观察到材料内有微血管形成,14d时达到峰值,随后有所下降并稳定于一定水平;B组7d时尚无微血管形成,14d时微血管数量较多,也呈现有所下降并趋于稳定的变化规律。结论PSFSs能在大鼠脊髓内血管化,可用于神经组织工程支架修复中枢神经损伤。
简介:摘要 通过SEM、压缩实验和有限元模拟等方法,研究了不同孔型结构对激光选区熔化(Selective Laser Melting, SLM)制备多孔β型钛合金组织和压缩变形行为的影响。实现结果表明,不同孔型结构多孔材料组织均为β等轴晶。压缩变形过程中,立方(CUB)结构多孔材料孔梁只发生屈曲变形,强度最高,约为297 MPa;菱形十二面体(RHO)结构的孔梁受较大的弯曲变形和较小的屈曲变形作用,强度最低但塑性最好;拓扑优化(TOP)结构受相同的弯曲变形和屈曲变形作用,强度适中,塑性较好。以上结果表明,通过改变孔梁倾斜角度调整其变形行为,可以有效调整多孔材料的强塑性匹配。
简介:摘要:多孔碳微球是一种以碳作为基本骨架的多孔结构材料,拥有良好贯通性或者封闭的孔洞构成的网络结构,既具有碳材料的高稳定性、优良的导电性及价格低廉等特点,又具有多孔材料的高比表面积、孔径可控等优异性能。本实验采用乳液聚合法将苯乙烯与丙烯腈按不同比例混合制备了聚丙烯腈(PAN)@聚苯乙烯(PS)的复合纳米碳微球,反应结束后经过洗涤干燥、预氧化、碳化制得分散性好的PAN。对不同比例的PAN微球进行了红外(FTIR)、透射电镜(TEM)、扫描电镜(SEM)、X射线衍射(XRD)等表征。采用低廉易得的原料和简单工艺,在碳微球工业化的道路上做出较为有意义的探索。
简介:摘要:多孔碳微球是一种以碳作为基本骨架的多孔结构材料,拥有良好贯通性或者封闭的孔洞构成的网络结构,既具有碳材料的高稳定性、优良的导电性及价格低廉等特点,又具有多孔材料的高比表面积、孔径可控等优异性能。本实验采用乳液聚合法将苯乙烯与丙烯腈按不同比例混合制备了聚丙烯腈(PAN)@聚苯乙烯(PS)的复合纳米碳微球,反应结束后经过洗涤干燥、预氧化、碳化制得分散性好的PAN。对不同比例的PAN微球进行了红外(FTIR)、透射电镜(TEM)、扫描电镜(SEM)、X射线衍射(XRD)等表征。采用低廉易得的原料和简单工艺,在碳微球工业化的道路上做出较为有意义的探索。
简介:多孔材料因其独特的结构和优异的性能在气体分离工艺中显示出巨大的应用潜力。近年来,新型多孔材料的发展为气体分离技术带来了突破性进展。这些材料包括金属有机框架(MOFs)、共价有机框架(COFs)和多孔有机聚合物(POPs)等,它们具有高比表面积、可调节的孔径和优良的化学稳定性,使其在气体吸附与分离中表现出卓越的性能。本文系统研究了这些新型多孔材料在气体分离中的应用,重点分析了它们在CO2捕集、氢气提纯和气体混合物分离中的具体表现。同时,本文还探讨了这些材料在实际应用中面临的挑战,如材料的合成成本、长期稳定性以及在复杂气体环境中的分离效率。研究结果表明,新型多孔材料在气体分离工艺中具有广阔的应用前景,但仍需进一步优化以实现大规模工业应用。