简介:提出了一种基于改进蚁群算法的动态K-均值聚类算法思想,该算法首先利用蚁群算法的较强处理局部极值的能力,动态地确定了聚类数目和中心,然后利用蚁群聚类得到的结果,再进行K-均值聚类弥补蚁群算法的不足。两者有机结合起来可以寻求到具有全局分布特性的最优聚类,实现了基于改进的蚁群聚类算法分析。
简介:非局部均值滤波是一种基于图像信息冗余的去噪方法,其认为图像自身的有效结构具有一定的重复性,而随机噪声则不具备这一特点,通过利用图像本身的自相似性来达到压制随机噪声的目的,是一种全局的去噪方法。本文把这一思想引入地震数据随机噪声压制中,针对传统非局部均值滤波计算量过大的问题,文章采用分块非局部均值的方式来减少计算量;针对滤波参数选取会影响非局部均值滤波效果的问题,提出一种简单的自适应滤波参数地震数据分块非局部均值算法。模型和实际数据处理结果表明:相对于传统的去噪算法(如f-x反褶积),该方法在压制随机噪声的同时对有效信号保护地更好,具有更高的保真度,更有利于后续的处理和解释工作。