学科分类
/ 25
500 个结果
  • 简介:本文证明了方程组(In+AB)x=0和(In+BA)x=0解的个数是一致的。

  • 标签: 线性方程组 矩阵
  • 简介:通过使用灰色矩阵覆盖集的分解方法和矩阵范数的性质,构造李雅普诺夫函数,研究了灰色中立随机线性时滞系统的鲁棒稳定性和几乎指数鲁棒稳定性.

  • 标签: 指数鲁棒稳定性 灰色 中立随机系统
  • 简介:考虑具常数特征拟线性双曲型方程,提出一个新的可化约方程组的方法,证明了具常特征方程组Cauchy问题经典解的整体存在性定理.同时构造一些例子说明一些有趣的现象.

  • 标签: 常数特征 拟线性双曲型方程组 经典解 奇性
  • 简介:本文对任意线性方程组AX=B(A∈R(n×m),B∈Rn),在文[1]基础上给出了一种迭代算法。其收敛速度比文[1]方法快,并证明了该算法的收敛性。最后,通过几个算例说明了本文算法的有效性。

  • 标签: 解线性方程组 迭代解法 迭代格式 迭代算法 正定阵 对称阵
  • 简介:病态方程组的条件数较大,当输入数据有微小扰动或计算过程中的舍入误差都可能引起输出数据的很大扰动,使得解严重失真,因此求解此类方程组是相当困难的.本文尝试使用模拟退火算法来求解病态线性方程组,得到了较好的结果,并与传统的求解方法作了简单的比较.

  • 标签: 线性方程组 病态方程组 模拟退火算法
  • 简介:推广并改进了实数域上线性方程组的反问题及其一系列结果,解决了除环上左线性方程组更具广泛性的一类反问题,给出了此类反问题有(斜)自共轭解及(半)正定自共轭解的充要条件及其解集结构。

  • 标签: 除环 左线性方程组 反问题 自共轭解 正定矩阵
  • 简介:本文考虑具有张量积结构线性系统的数值解法.该线性系统常常来源于高维立方体上线性偏微分方程的有限差分离散化.利用张量一矩阵乘法,给出了基于张量格式的求解这类线性系统的共轭梯度法.与求解标准线性系统的共轭梯度法比较,新的算法能够节约大量的计算量及存储空间.

  • 标签: 张量积 张量-矩阵乘法 共轭梯度法 高维
  • 简介:设函数b=(b1,b2,…,bm)和广义分数次积分L-a/2(0〈α〈n),它们生成多线性算子定义如下Lb-a/2f=[bm…,[b2[b1,L-a/2]],…,]f,其中m∈Z+,bi∈Lipβi(0〈βi〈1),其中(1≤i≤m).将讨论Lb-1a/2。从Mp^q(Rn)到Lip(α+β-n/q)(Rn)和q^q(Rn)到BMO(Rn)的有界性.

  • 标签: 多线性算子 广义分数次积分 Lipschitz函数空间
  • 简介:给出了Banach空间中线性离散时间系统一致与非一致多项式膨胀性的概念,使其在相应空间中范数的增长速度不快于指数型增长,并用实例阐释了二者的关系.借助于指数型膨胀性的研究方法,讨论了其非一致多项式膨胀性的离散特征.作为应用,利用Lyapunov函数给出了相应概念的充要条件.得到了指数膨胀性理论中一些经典结论在非一致多项式膨胀情形下的变形.

  • 标签: 线性离散时间系统 非一致多项式膨胀性 LYAPUNOV函数
  • 简介:讨论了年龄相关的半线性时变种群系统的最优捕获控制问题.根据微积分方程及泛函分析的知识证明了最优捕获控制的存在性,得到了捕获控制为最优的必要条件.

  • 标签: 半线性种群系统 最优捕获 必要条件
  • 简介:在响应变量满足MAR缺失机制下,我们分别研究了基于观察到的完全样本数据对、基于固定补足后的“完全洋本”和基于分数线性回归填补后的“完全洋本”得到的回归系数的最小二乘估计的弱相合性、强相合性及渐近正态性,我们还通过数值模拟,比较了基于上述估计得到的β的置信区间的优劣。

  • 标签: 缺失数据 线性模型 相合性 渐近正态性
  • 简介:本文讨论了一类二阶线性时变系统在临界情况下的稳定性,给出了保证该系统零解稳定的充分条件,这一结果将拓宽控制论中二维线性时变控制系统的研究范围。

  • 标签: 线性的 时变系统 临界情况稳定
  • 简介:由从他们的双方面解决线性编程问题,为线性编程的一个新一般算法被开发。在每次重复,算法由处理与双系统联系的一个最不方形的问题发现一个可行降下搜索方向,用QR分解技术。新方法是枢方法andinterior点方法的联合。它事实上不仅减少从退化产生的困难的可能性,而且有象枢方法的一样的优点在对温暖开始解决线性编程问题。一组随机构造的问题的数字结果是很令人鼓舞的。

  • 标签: 求解 线性规划 最小二乘算法 规划论
  • 简介:在GPS和测绘等领域中,混合整数线性模型是非常重要的一种模型。本文在混合整数线性模型参数的最小二乘估计的基础上,证明了该估计量的弱相合性。MonteCarlo模拟验证表明,各参数估计的相合效果明显。

  • 标签: 混合整数线性模型 最小二乘估计 弱相合性