简介:针对三维弹道目标,给出了一种有效的基于粒子滤波的跟踪算法。这种算法以标准的粒子滤波算法为基础,根据贝叶斯原理利用局部线性化技术获得最佳近似的重要性密度函数以避免粒子退化现象,并且利用Metropolis-Hastings(MH)采样构造的马尔科夫链得到更加符合目标分布的样本,从而最小化重采样后的粒子枯竭问题。此外,这里采用Kullback-Leibler距离(KLD)指标对不同粒子滤波算法的性能进行评估。仿真结果表明,该三维弹道目标跟踪算法粒子群与参考粒子群(近似真实目标概率分布的粒子群)之间的KLD比标准粒子滤波与参考粒子群之间的KLD更小,因此,能获得比标准粒子滤波算法更好的跟踪效果。
简介:为了有效地评价图像质量,该文提出一种应用人眼视觉特性的全参考图像质量评价方法。该方法主要考察了人眼的两个视觉特性,即韦伯定律和视觉注意机制,并利用这两个特性计算对应的差异激励图和视觉显著性图,将其作为能够反映图像失真的特征图,同时考虑了观察因素的影响,最后得到了失真图像的质量评价指标。实验结果表明,该方法在LIVE、CSIQ和LIVEMD三个图像库上有很好的表现。三个图像库的加权平均结果显示,本文方法的表现优于所有对比方法,包括近期提出的GMSD和VSI方法,说明本文方法的评价结果与主观感知不仅具有更好的一致性,而且具有很好的通用性和鲁棒性。