简介:摘要 高考说明中明确指出: "对于圆锥曲线的内容,不要求解有关两个二次曲线交点坐标的问题 (两圆的交点除外 )". 但是,在解答某些问题时,难免会遇到两个二次曲线相切或相交的问题,因此,应该让学生明白:双二次曲线消元后,得到的方程的判别式与交点个数不等价.其次,有些问题涉及两个二次曲线,但所讨论和研究的并不是交点,而是它们的某些参量之间的关系,问题往往显得较为复杂,这类问题要特别加以注意。
简介:提出了带形状参数的n次Wang-Ball调配函数,它是n次Wang-Ball基函数的扩展,它具有与n次Wang-Ball基函数相似的性质。基于给出的调配函数,构造了带形状参数的多项式曲线。参数λ具有明确的几何意义,当λ增大时,曲线将逼近于控制多边形,当λ=0时,即退化为n次Wang-Ball调配函数,它为曲线设计提供了一种有效的方法。
简介:不同曲线的公共点问题可按要求或数形结合简捷地得出结论,或联立方程组成方程组,利用一元二次方程根的有关理论加以解决。例1过点且与抛物线有且只有一个公共点的直线共有条。该题只论条数,可数形结合解之。设符合条件的直线方程为,由图可知,即与抛物线对称轴平行的直线;即抛物线的切线以及不存在的抛物线的另一条切线均与抛物线有且只有一个公共点。但是选的可能性也极大,主要是受思维定势的影响而对轴“视而不见”造成的。例2若直线双曲线对任意实数总存在公共点,求实数应满足的关系。建立方程组,消元,借助一元二次方程根的判别法,将总有公共点等价转化为某方程恒有满足条件的实数根。联立方程,消y得:门-8’8‘)X’-(2+2+’b+)X-l-db-/=0由1.aZm’不恒为零,故当且仅当凸30有实根,即不等式(1-a’)m‘+Zbm+bZ+l一0对任意实数m恒成立,于是有rl-aZ>0L4b‘-41-a‘)(b‘+l)<0或者l-aZ二卜=0综合两种情况,得a,b的关系为aZb‘+b‘-l<0。例3,当R在什么范围内取值时,动圆(x-l)‘+/=R‘与定椭圆x‘+4y‘二4有公共点?该题联立方程消y元后,由X的取值范围可直接求出R的范围。...