简介:分别以Bemstain多项式以及准均匀B样条为基函数,来逼近线性高振荡常微分方程。通过求解基函数对应的系数方程组,得到方程的近似解。通过数值实验表明用准均匀B样条函数的逼近效果要比Bemstain多项式要好。
简介:在一致光滑Banach空间中,证明了广义Lipschitzφ-增生算子的带误差项的Ishikawa迭代序列强收敛于方程Tx=f的解,其结果改进和扩展了近期许多相关结果.并由此得出了Ishikawa迭代序列稳定性的一些结果.
简介:用辛几何的观点得到了四阶杆振动方程的一族十字架辛格式,对于四阶杆振动方程的稳定条件不一定随时间方向的精度的提高而放宽,而随空间方向精度的提高稳定范围缩小.数值例子表明单辛算法具有良好的数值稳定性.
简介:在一致凸Banach空间上,研究了半紧的非扩张压缩映象||Tx-Ty||≤||x-y||的Ishikawa型的三重迭代序列的收敛性问题,建立并证明了带误差的Ishikawa三重迭代逼近收敛定理,从而独特的推广了Mann和Ishikawa迭代方法,改进和发展了文献[1]-[7]的主要结果.
简介:当修复率为常数时通过研究具有带临界和非临界故障的可修k/N:G冗余表决系统研究中出现的投影算子的表达式得到该系统的时间依赖解指数收敛于该系统的稳态解.