学科分类
/ 3
55 个结果
  • 简介:用变分方法证明H~1(R~N)上一个限制的半线性椭圆特征问题解的存在性.所获得的三个解:一个是正解,一个是负解.对于第三个解,本文只证明了它的存在性,而没有确定它是正解,负解,还是变号解.

  • 标签: 椭圆特征问题 临界点理论 多解
  • 简介:分别以Bemstain多项式以及准均匀B样条为基函数,来逼近线性振荡常微分方程。通过求解基函数对应的系数方程组,得到方程的近似解。通过数值实验表明用准均匀B样条函数的逼近效果要比Bemstain多项式要好。

  • 标签: Bemstain多项式 准均匀B样条 线性高振荡常微分方程
  • 简介:本文首先用偏微分方程描述了一类生长函数的具有林龄结构的植物病虫害模型;其次主要利用算子理论、积分方程理论证明了模型解的存在唯一性,利用对应的特征方程讨论了系统平衡态的稳定性.

  • 标签: 植物病虫害 存在性 平衡态 稳定性
  • 简介:本文研究了同时带有基差风险和交易费用的不安全市场中的权证定价方法。把[1]的模型推广到了考虑基差风险的情况[2]。期权的价格以一个三维自由边界问题的解给出,并含有两个相关的股票价格变量的相关系数。

  • 标签: 权证定价 交易费用 基差风险 效用最大化
  • 简介:设Z为实一致光滑Banach空间,T:Z→Z为强增生映射,文章提出了新的误差的三重迭代序列,并证明了误差的三重迭代序列强收敛到方程Tx=f的唯一解,(误差的)Mann迭代和(误差的)Ishikawa迭代均可作为其特例.此外,相关结果也讨论了关于强伪压缩映射不动点的三重迭代逼近问题.

  • 标签: 三重迭代 强增生映射 强伪压缩映射 非线性增生算子 收敛性 误差
  • 简介:用辛几何的观点得到了四阶杆振动方程的一族十字架辛格式,对于四阶杆振动方程的稳定条件不一定随时间方向的精度的提高而放宽,而随空间方向精度的提高稳定范围缩小.数值例子表明单辛算法具有良好的数值稳定性.

  • 标签: 四阶杆振动方程 HAMILTON系统 辛格式 稳定条件
  • 简介:本文考虑了一类具时滞扰动的维系统,利用不动点定理,建立了保证其撬周期解的存在性、唯一性和稳定性的充分性条件,推广了相关文献的主要结论.

  • 标签: 时滞 概周期解 存在性 唯一性 稳定性
  • 简介:在一致凸Banach空间上,研究了半紧的非扩张压缩映象||Tx-Ty||≤||x-y||的Ishikawa型的三重迭代序列的收敛性问题,建立并证明了误差的Ishikawa三重迭代逼近收敛定理,从而独特的推广了Mann和Ishikawa迭代方法,改进和发展了文献[1]-[7]的主要结果.

  • 标签: 一致凸BANACH空间 半紧的非扩张映射 Ishikawa型的三重迭代序列 不动点
  • 简介:主要利用较文献[4]更为简明的方法证明了有关有限域Fq(q为一个素数幂)上的以l为周期的n次不可约多项式的个数的结论。另外,本文结合结合初等数论知识得到了前面这个结论的几个推论,并对利用低次不可约多项式构造次不可约多项式进行了研究。

  • 标签: 不可约多项式 本原多项式 极小多项式 周期