简介:第一类弱奇异核Fredholm积分方程由于奇异及本质的不适定性,给求解带来很大难度.本文首先利用克雷斯变换将方程转化,并对转化后的方程进行高斯一勒让德离散,得到一离散不适定的线性方程组,结合正则化方法对该类问题进行数值求解.最后给出了数值模拟,验证了本文方法的可行性及有效性.
简介:基于解的充分必要条件,提出一类广义变分不等式问题的神经网络模型.通过构造Lyapunov函数,在适当的条件下证明了新模型是Lyapunov稳定的,并且全局收敛和指数收敛于原问题的解.数值试验表明,该神经网络模型是有效的和可行的.
简介:引入一类Lupas-Baskakov积分算子,给出它对有界变差函数的点态逼近度,并指出精确的逼近阶。
简介:利用Mawhin的重合度理论,研究了一类具时滞的Liénard型方程的周期解的存在性,并举例说明了其应用.
简介:刻画加权Bergman空间Aα^2(Ω)上的加权复合算子Cφ,Ф的Schatten-p类.
简介:利用临界点理论研究具有部分周期位势的非自治常p-Laplace系统周期解的存在性.在具有p-线性增长非线性项时,根据广义鞍点定理,得到了系统多重周期解存在的充分条件.
简介:本文研究了一类广义Liénard系统dx/dy=h[y-F(x)],dy/dt=-g(x)周期解的不存在性,得到了系统(1)具有多个奇点时不存在非平凡周期解的若干充分条件。