简介:摘要目的比较差分整合移动平均自回归模型(ARIMA)和深度学习模型在吸脂操作数据预测分析方面的应用价值。方法选取2019年1至9月中国医学科学院整形外科医院符合入选标准的行吸脂手术患者,使用基于光学追踪系统和力传感技术的吸脂操作记录系统,采集高年资整形外科医生吸脂手术初始250~400 s的操作数据,包括运动学和力学数据。经预处理后将采集数据分成一个吸脂往复循环为一组的数据。分别使用ARIMA模型和深度学习模型处理分析采集到的数据,建立吸脂操作预测模型。用Matlab 2017软件产生随机数随机抽取30对共计60组吸脂循环数据,计算每对数据的动态时间规整(DTW)值作为检验标准,然后分别计算基于ARIMA模型与深度学习模型的各30组预测数据与实际数据之间的DTW值,与检验标准对比,对2种模型的预测结果进行验证。应用Matlab 2017软件进行统计分析,2组比较用独立样本t检验,P<0.05为差异有统计学意义。结果共入组18例患者,均为女性,年龄23~49岁,平均36.6岁。吸脂部位分别为腹部、大腿、腰部。共获得16 800组吸脂循环数据。模型检验标准DTW值为0.048±0.028。ARIMA模型预测数据与实际数据之间的DTW值为0.660±0.577,与检验标准比较差异有统计学意义(P<0.05)。深度学习模型得出的DTW值为0.052±0.030,与检验标准比较差异无统计学意义(P>0.05)。结论相比ARIMA模型,深度学习模型可以更准确地预测吸脂操作数据,能更好地适应不同情况的数据,并且具有更好的实时性。
简介:摘要目的基于矢状位影像学参数和临床特征构建颅底凹陷患者复位术后生命质量的LASSO-logistic回归预测模型并对其进行验证。方法回顾性分析2015年8月至2020年8月空军军医大学唐都医院神经外科采用经颈后路复位减压植骨融合内固定术治疗的94例颅底凹陷患者的临床资料。基于患者的年龄、体重、手术前后疼痛数值评价量表(NRS)评分、颈椎功能障碍指数(NDI)及矢状位影像学相关参数,采用LASSO-logistic回归法筛选出鲁棒性最好的变量并构建颅底凹陷患者复位术后生命质量的预测模型。绘制受试者工作特征(ROC)曲线,并根据曲线下面积(AUC)判断该预测模型的效能。采用Bootstrap法进行500次重复抽样进行内部验证。结果LASSO-logistic回归的分析结果显示,共9个因素纳入预测模型,分别为:年龄、体重、术前NRS评分、术前NDI、术前头颈屈曲角(HNFA)、术后斜坡枢椎角(pCXA)、术后斜坡斜坡角(pCS)、术后延髓脊髓角(pCMA)及术后Boogaard角(pBoA)。通过绘制ROC曲线,发现该预测模型的AUC为0.893,灵敏度为79.4%,特异度为84.6%,阳性似然比为5.162,阴性似然比为0.243。内部验证的结果显示,AUC为0.885,灵敏度为81.3%,特异度为82.6%,阳性似然比为5.153,阴性似然比为0.237。结论基于年龄、体重、术前NRS评分、术前NDI、术前HNFA、pCXA、pCS、pCMA及pBoA构建的颅底凹陷患者复位术后生命质量LASSO-logistic预测模型拟合性较好。
简介:摘要目的探讨铁代谢相关基因(IRGs)的异常表达与乳腺癌的发生发展的关系,寻找相关基因构建分子标记以预测乳腺癌的发生发展。方法通过GSEA数据库发现与铁代谢相关的基因本体(GO)通路。在这些GO富集分析通路中有367个与铁代谢相关的基因,然后从肿瘤基因组图谱(TCGA)获得乳腺癌的RNA数据和临床数据,通过差异基因的数据分析,发现与乳腺癌特异性相关的铁代谢基因,然后对这些基因进行统计筛选后构建多元回归差异模型。结果由ATP6AP1、ABAT、TTYH1、AIFM3、P4HA3、CCNB1、TFRC、CH25H、CYP46A1、BRIP1、ATP6V0B、SLC11A1铁代谢基因构建的模型可预测乳腺癌的发生和发展,其中高危组的存活率明显低于低危组[(21.5%比37.5%),生存分析(Kaplan-Meier),P<0.01]。ROC曲线用于验证1、3、5、10年的预测准确性高[1年曲线下面积(AUC)=0.673,3年AUC=0.704,5年AUC=0.629,10年AUC=0.701)。结论铁代谢相关基因可预测乳腺癌的发生发展。
简介:摘要目的基于矢状位影像学参数和临床特征构建颅底凹陷患者复位术后生命质量的LASSO-logistic回归预测模型并对其进行验证。方法回顾性分析2015年8月至2020年8月空军军医大学唐都医院神经外科采用经颈后路复位减压植骨融合内固定术治疗的94例颅底凹陷患者的临床资料。基于患者的年龄、体重、手术前后疼痛数值评价量表(NRS)评分、颈椎功能障碍指数(NDI)及矢状位影像学相关参数,采用LASSO-logistic回归法筛选出鲁棒性最好的变量并构建颅底凹陷患者复位术后生命质量的预测模型。绘制受试者工作特征(ROC)曲线,并根据曲线下面积(AUC)判断该预测模型的效能。采用Bootstrap法进行500次重复抽样进行内部验证。结果LASSO-logistic回归的分析结果显示,共9个因素纳入预测模型,分别为:年龄、体重、术前NRS评分、术前NDI、术前头颈屈曲角(HNFA)、术后斜坡枢椎角(pCXA)、术后斜坡斜坡角(pCS)、术后延髓脊髓角(pCMA)及术后Boogaard角(pBoA)。通过绘制ROC曲线,发现该预测模型的AUC为0.893,灵敏度为79.4%,特异度为84.6%,阳性似然比为5.162,阴性似然比为0.243。内部验证的结果显示,AUC为0.885,灵敏度为81.3%,特异度为82.6%,阳性似然比为5.153,阴性似然比为0.237。结论基于年龄、体重、术前NRS评分、术前NDI、术前HNFA、pCXA、pCS、pCMA及pBoA构建的颅底凹陷患者复位术后生命质量LASSO-logistic预测模型拟合性较好。