简介:著名科学方法论学者源波普尔(K.R.Popper)认为:“正是问题激发我们去学习,去发展知识,去实践,去观察”.数学家们无一不懂得问题在整个数学发展以及个人创造活动中的地位和作用,问题驱动下的课堂教学成为当下研究的热点.大多数教师认识到“问题驱动”在课堂教学中的作用,教学活动以“问题”作为先行组织者,并以“如何解决问题”为核心展开教学过程但实践中经常遇到问题“驱”而不“动”的现象,下面结合几个教学案例,反思问题“驱”而不“动”的原因,就如何利用“问题”驱动课堂顺利进行,谈一点个人的看法与思考.
简介:编者按:本文系作者在2014年全国数学建模竞赛培训与应用研究研讨会上所作大会报告整理而成,文中对数学建模做了新的诠释,很值得一读.本刊特别向广大读者推介这篇文章,以期有力推动全国数学建模教学与科研的发展。各位同志:大家好。对数学建模的认识与看法,我在很多场合、特别在每年一次的建模颁奖仪式上都讲了很多。每年的讲稿虽看上去差不多,但都有一些必要的补充、修改及发挥,说明我的认识与看法也一直在不断深化。
简介:苏霍林斯基曾说过:“让学生体验到一种自己亲自参加与掌握知识的情感,乃是唤起少年特有的对知识的兴趣的重要条件.”那么怎样让学生体验到学习的乐趣呢?陶行知先生说过:“发明千千万,起点是一问,智者问得巧,愚者问得笨.”问题驱动教学法正是这种思想的体现.
简介:就目前数学建模教学及竞赛培训的现状、存在的问题,结合山东大学近二十年来在课程定位、体系构建、课程设计、科研创新实验班设置等方面的实践与探索,阐述了基于数学建模的交叉创新人才培养理念和实践方法,同时就目前建模活动中常见的一些问题,提出了相应的改进策略。
简介:本文讨论两资产择好期权的定价问题。在风险中性假设下,建立了两资产价格过程遵循分数布朗运动和带非时齐Poisson跳跃一扩散过程的择好期权定价模型,应用期权的保险精算法,给出了相应的择好期权的定价公式。
问题驱动为何“驱”而不“动”
从数学建模到问题驱动的应用数学
问题驱动教学法探索——计数原理教学案例分析
创新驱动下的数学建模与交叉创新人才培养模式的实践
分数布朗运动和泊松过程共同驱动下的择好期权定价