简介:研究了横向气动载荷和参数激励联合作用下复合材料悬臂外伸矩形板在伸出过程中的非线性动力学问题.根据Reddy的高阶剪切层合板理论,应用Hamilton原理建立了外伸板在横向气动力和参数激励作用下的非线性动力学方程,其中横向气动力采用一阶活塞气动力.然后应用Galerkin方法对系统偏微分形式的非线性方程进行离散,得到了一组时变系数的非线性动力学方程.在此方程的基础上,对复合材料悬臂外伸板进行了数值模拟分析,讨论了外伸速度对悬臂外伸板非线性动力学特性的影响.
简介:研究外部扰动力矩作用下航天器的混沌姿态运动,引入Deprit正则变量建立系统的Hamilton结构,应用Melnikov方法预测系统产生的稳定流形和不稳定流形的横截相交,得到系统产生混沌姿态运动的条件。研究表明:随着转子转动惯量的增加,引起系统出现混沌姿态运动的激励频率的范围逐渐减小。最后,对相空间轨线的数值模拟表明理论分析的可靠性。
简介:研究了一类参数激励和外激励联合作用下四边简支薄板在1:1内共振下的周期解分叉.首先,根据vonKarman方程推导出四边简支薄板的运动控制方程,利用Galerkin方法得到参数激励和外激励联合作用下的两个自由度的运动方程.然后,通过引入周期变换和相应的Poincar6映射推广了次谐Melnikov方法.最后,对系统进行数值模拟验证了理论的正确性.
简介:研究了非线性随机动力系统所对应的Fokker-Planck-kolmogorov(FPK)方程.讨论了微分方程的可朗克(Crank)一尼考尔逊(Nicolson)型隐式有限差分格式以及微分的四阶中心差分格式,将两者相结合,得到FPK方程的四阶中心C-N隐式格式差分解,并与FPK方程的精确解进行了比较.数值结果表明,该方法具有良好的稳定性,且可以解决其他方法在概率密度峰值处偏小,而在尾部处较大等缺点.