简介:运用二重B-值随机变量列{Xmn}在某阶矩一致有界条件下的性质和引理2.1的不等式,结合二重Dirichlet级数的成果,证明了在一定条件下,二重B-值随机Dirichlet级数+∞∑m=1+∞∑n=1Xmne-λms-μnta.s.几乎必然与二重Dirichlet级数+∞∑m=1+∞∑n=1E(||Xmn||)e-λms-μnt有相同的成对的相关收敛横坐标.
简介:利用Clark定理,研究了一维p-Laplacian方程边值问题多解的存在性,得到了这类边值问题至少有n对非平凡解的充分条件.
简介:为提高攻击导弹同时面对目标飞机及其防御导弹情况下的命中概率,基于微分对策理论,对攻击导弹的制导律进行了设计。应对独立控制的多对象博弈问题,微分对策理论具有天然的优势,且相比于最优制导律,微分对策制导律对于目标机动估计误差和机动策略具有更强的鲁棒性。所推导的微分对策制导律进一步考虑了攻击导弹的控制有界性,且适用于攻击导弹、目标飞机和防御导弹具有高阶线性控制系统动态的情形。为验证制导律性能,进行了非线性系统仿真,结果表明该制导律在成功归避防御导弹的同时可实现趋于零脱靶量的目标拦截。攻击导弹为实现规避和攻击的双重任务,仅需要保持相比于防御导弹两倍左右的机动优势。