简介:图像识别技术主要包括图像特征的提取和图像的分类,在这两种技术中,图像特征的提取是图像识别技术最关键的技术。图像特征提取的准确性是衡量一个图像识别算法好与坏的唯一指标。图像特征提取主要采用分布式点矩阵的方法,通过在图像中插入一定数量的特征点,通过对特征点的比较,将符合特征点的部分加以整合和归纳,最终得出图像的特征。但在现有的技术中,特征点的插入数量和特征点对照的准确度在各种算法中均有优劣,而深层学习作为一种组织架构更完善的处理方法,显然是很适合图像识别算法的使用。所以本文就深度学习的原理及基于深度学习原理的图像识别算法的基本原理进行探讨,并对基于深度学习的图像识别算法的研究做出详细的讨论。
简介:摘要光伏阵列被云层局部遮挡,使得其功率-电压(P-V)曲线呈现阶梯状、多极值的形状,从而造成传统的最大功率点跟踪不起作用,陷入局部寻优,本文提出了一种可以快速、稳定并且能够全局寻优的最大功率点跟踪(MPPT)算法。算法先将粒子群优化(PSO)改进,使得在一定的迭代次数下稳定地全局更新所有粒子的速度和位置,快速找到最大功率点(MPP)的大概位置,再利用改进的Fibonacci数列作为变步长扰动观察法步长改变的依据,快速接近和得到功率的最佳解1。通过Simulink建立了仿真模型,与变步长扰动观察法、传统粒子群优化算法进行比较,验证了算法在精度与速度上有明显提升。
简介:摘要当前普遍应用到的一种太阳能发电系统控制算法即为最大功率点跟踪(MPPT),通常情况下,系统的实现是通过微控制单元这一渠道完成。这种情况下,本文采取现场可编程门阵列(FPGA),使得获得到的太阳能最大功率点跟踪电路具有更好的经济性,另外对于构成系统硬件的情况进行分析,探究各功能部分接口的情况等内容。通过实施Verilog语言,达到获得ADC控制器以及最大功率点跟踪算法、PWM波波形发生器等目标,之后展开严谨的仿真设计电路,所应用的方式即为Modelsim,最后展开下载,也就是基CycloneII系列EP2C8Q208C8芯片基础上完成这一过程。通过展开完整严密的实验,结果显示能够使得电路在一种健康平稳的状态中运行,此设计具有一定的科学性以及合理性,能够提供给有效的控制太阳能发电系统系统级芯片重要的依据。
简介:传统基于Gabor滤波器的SAR目标识别方法根据图像全局特征进行目标识别,忽略图像局部纹理特征,容易受到噪声因素的干扰,获取的SAR目标识别结果精确度较低。因此,提出基于图像局部纹理特征的SAR目标识别算法,对SAR图像纹理特征进行提取,提取SAR图像纹理特征时,采用优化的TPLBP特征描述器提取图像局部纹理特征,获取TPLBP局部纹理特征向量;通过基于ELM分类器的SAR目标识别算法,对TPLBP局部纹理特征向量进行SAR目标分类与识别,获取理想的SAR目标识别结果。实验结果表明,所提方法在SAR目标识别方面具有准确率高、误判率低的优势。
简介:针对合成孔径雷达(SAR)图像感兴趣区域(ROI)的分割问题,提出了一种基于Mellin变换的正则化参数的自适应选取方法。首先将SAR图像乘性相干斑噪声转化为加性相干斑噪声,在此基础上应用正则化模型建立SAR图像特征增强目标函数。然后推导出正则化参数与相应范数项的关系式,应用共轭梯度法对模型进行求解,最终达到图形特征增强与相应ROI分割的目的。所提算法不仅有效抑制了背景杂波,降低了相干斑的影响,而且还克服了传统方法对参数经验值选取的弊端。基于真实SAR图像数据的实验结果验证了该方法的简便性和有效性。
简介:针对矿井结构复杂,井下未知节点定位存在信标节点布置冗余、定位精度低等问题,提出了一种基于粒子群优化算法的井下目标定位方法。根据矿井环境特点区块化布置信标节点,通过引入线性递减权重的粒子群算法对未知节点与信标节点的测量距离和估计距离的误差进行优化,降低定位误差。与四边测量法、加权最小二乘法和RSSI加权质心算法进行Matlab仿真对比实验。仿真结果显示:信标节点为5个,节点总数为15时,平均定位误差为0.877m。高斯白噪声标准差取值范围从5递增到20,平均定位误差由1.21m增长到4.65m,增长幅度最小,抗噪性最好。信标节点密度由10%增加到40%,平均定位误差从2.82m下降到0.76m,定位精度明显好于其他三种算法,稳定性好于RSSI加权质心算法。定位精度更高,抗噪性更好,可靠稳定,在井下巷道环境中适应性更强。