简介:本文研究一个可靠机器、一个不可靠机器与只容纳一个部件的缓冲库构成的系统的时间依赖解的渐近行为.首先在我们已有的工作基础上指出该模型的主算子生成的C0-半群的本质增长界小于一个负数,由此推出0是该主算子的一级极点.然后用残数定理求该系统研究中出现的投影算子的表达式.最后证明该模型的时间依赖解指数收敛于其稳态解.本文的思想和方法适用于一个可靠机器、一个不可靠机器与容纳有限个部件的缓冲库构成的系统.
简介:考虑了一类p-Laplacian拟线性椭圆变分不等式问题,通过运用优化理论中的补偿法和Clark次微分性质,研究了这类椭圆变分不等式解的存在性.
简介:文[1]中提出了求解连续函数f(x)总体极小值的均值算法,并证明了算法的全局收敛性.若假设f(x)是定义在某可测集G上的可测函数,本文证明了均值算法产生的迭代序列全局收敛到f(x)的本质极小值,若进一步假设函数f(x)满足测度Lipschitz条件,还证明了求可测函数的均值算法是线性收敛的.
简介:运用Leray-Schauder原理讨论一阶常微分方程多点初值问题{x'(t)=f(t,x(t)),a.e.t∈{0,T]x(0)+k=1∑^makx(tk)=c0的可解性,其中f是一个Caratheodory函数