简介:描述玻色-爱因斯坦凝聚(BEC)的有效而方便的方程是著名的Gross-Pitaevskii(GP)方程。本文在将GP方程变换为非线性薛定谔方程(NLS)的基础上,利用齐次平衡法求出了Gross-Pitaevskii(GP)方程的一系列Jacobi椭圆函数解。
简介:本文讨论带有给定切线多边形的保形逼近问题.给出了一条与给定切线多边形相切的保形五次参数祥条曲线。
简介:一、填空1.方程13xa+2=3是一元一次方程,则a=.2.3x-2与2x-3互为相反数,则x=.3.(2x-1)2+|3y+2|=0,则x=,y=.4.当m=时,关于x的方程mx-8=17+m的解是-5.5.若5xmy与12yn+2x3是同类项,则m=,n=.6.把浓度为95%的酒精1500克稀释为75%的酒精,需加水克.二、单项选择题1.已知y=1是方程2-13(m-y)=2y的解,那么关于x的方程m(x-3)-2=m(2x-5)的解是( )(A)x=-2 (B)x=-1(C)x=0 (D)x=12.用60厘米长的铁丝做成一个长方形的教具,使长为10厘米,宽为x厘米,所列的方程是( )