简介:针对复杂电磁环境下LFM脉压雷达移频干扰辨识的问题,提出了一种新的基于分数阶Fou—rier变换的干扰识别方法。该方法通过将分数阶Fourier变换与雷达接收机中的匹配滤波结果相结合,不仅可实现对接收信号的分数阶滤波,去除复杂电磁环境中的杂波噪声,进而提高脉冲压缩测距系统的准确度;并且将利用分数阶Fourier变换估计得到的目标速度信息与脉冲压缩所得距离信息相结合,可有效识别敌方干扰机发射的假目标欺骗干扰。仿真实验验证了方法的有效性。
简介:在穿墙雷达建筑物布局成像中,针对现有成像算法因没有充分利用墙体本身的物理特性而出现墙体轮廓模糊、边缘不连贯以及成像过程耗时的问题,提出一种基于优化最小化框架的墙体成像算法。该算法首先利用像素块来表征墙体连续块状的物理特性,并将其引入信号模型,然后以LASSO(LeastAbsoluteShrinkageandSelectionOperator)模型为基础,在优化最小化框架下构造稳健的优化目标函数,最后利用墙体回波信号的时移特性并结合卷积得到迭代过程的快速实现。实验结果表明,该算法对墙体成像特征明显,不仅保证了墙体轮廓特性,而且杂波少、分辨率高,并较大幅度减小了成像算法处理时间。
简介:天波超视距(0TH)雷达系统中,为了获得较高的多普勒分辨率,通常会采用长的相干积累时间,但对于机动目标,长相干积累时间会导致回波的多普勒展宽,不利于检测。对于弱目标,由于其能量低,容易被强目标掩盖,加大了检测难度,针对这一问题,提出一种基于目标运动参数估计的0THR机动弱目标检测方法。利用遗传算法优越的参数估计性能这一特点,采用遗传算法估计各目标的运动参数,并引入“clean”算法的思想,在时域上逐个减去强目标,以消除强目标的掩盖效应。又考虑到遗传算法的运算量较大,进一步提出采用时频分析算法估计各参数范围,减小遗传算法的运算量。仿真结果表明,与已有算法相比,文中算法具有更高的参数估计精度和弱目标检测性能。
简介:针对ORB特征点匹配中常采用的随机抽样一致性(RandomSampleConsensus,RANSAC)匹配点提纯算法存在计算量大、效率低的问题,本文提出一种改进的RANSAC算法。先使用2-近邻算法查找满足阈值的匹配,接着使用双向匹配交叉过滤方法剔除图像帧中明显的错误匹配,然后对匹配点对的Hamming距离进行排序,将匹配点对距离大于最小距离一定倍数的匹配点对再一次剔除,最后再利用RANSAC算法迭代。分别采用改进RANSAC算法和RANSAC算法进行匹配点提纯实验,实验结果显示,改进RANSAC算法与RANSAC算法相比匹配准确度提高了6.03%,匹配准确度提高至93.46%,匹配点提纯速度提高了26.74%,提纯时间降到0.441s。