简介:讨论一类非线性分数阶微分方程耦合系统的Robin边值问题,应用Schauder不动点定理证明正解的存在性,然后利用Adomian分解方法求出该边值问题的近似解.另外,给出一个数值例子来说明我们主要结果的应用.
简介:研究了一类完全广义集值强非线性混合似变分不等式在自反Banach空间下的问题,借助一个极大极小不等式,证明了这类完全广义集值强非线性混合似变分不等式的解的存在唯一性定理。
简介:研究一类具有饱和发生率的离散型SIS传染病模型,得到模型的基本再生数。通过比较原理以及构造适当的Lyapunov函数,证明当基本再生数R0<1时,无病平衡点是全局渐近稳定的;当基本再生数R0>1时,地方病平衡点是全局渐近稳定的。