学科分类
/ 2
23 个结果
  • 简介:证明了在正则空间中闭Lindelof映射保持且逆保持submeso性,这改进了林寿关于正则空间完备映射保持且逆保持submeso性这一结果;同时我们引用一个反例说明原象空间的正则性是必要的.

  • 标签: submeso紧空间 闭Lindelof映射 meso映射
  • 简介:设X是自反Banach空间且X和X^*均为局部一致凸空间,D是X的开、有界、凸子集,T:D→X^*是伪单调算子(pseudo-monotone),C:D→X^*是算子或全连续算子。利用(S+)型算子的度理论,我们建立了T+C值域性质的几个结果,这些结果对研究各类方程问题有所应用。

  • 标签: 伪单调算子 (S+)型算子 同伦 紧扰动 局部一致凸空间 值域
  • 简介:许多常微分方程教材关于解的整体连续依赖性的讨论都用到了一个“性”事实:欧氏空间中的集上一个局部Lipschitz函数一定在该集上是全局Lipschitz的.然而这一事实在教学中并非显然,不少学生在试图给出证明时都走入了一个误区.本文对这一问题从正反两方面进行了讨论.

  • 标签: 局部LIPSCHITZ条件 全局Lipschitz条件 紧集 管形邻域
  • 简介:证明了正则空间中闭Lindelof映射逆保持序列式meso性,从而改进了MancusoVJ关于正则空间中完备映射逆保持meso性这一结果;进一步我们指出定理条件中原象空间的正则性不可被省略而象空间的正则性可以用原象空间的正规性来替代.

  • 标签: 序列式meso紧 序列式meso紧映射 闭Lindelof映射
  • 简介:本利用几何不等式和曲率估计的方法,证明了黎曼流形N^n+p,上的具有平行平均曲率的子流形M^n上的一个拼挤定理。若N上的截曲率KN满足-1≤KN≤δ≤0,且‖S-nH2‖n/2,‖S-nH^2‖n/n-s满足一些不等式,则δ=-1。

  • 标签: 拼挤定理 子流形 非负截曲率
  • 简介:设X是一个实Banach空间,X*为其对偶空间,G是X的开、有界子集.T:D(T)(属于)X→2^x是m-增生算子,C:D(T)→X是有界算子.分别在C(T+I)-1非扩张与C(λT+I)-1的情况下,利用凝聚映射的度理论,考虑了方程0∈-R(T+C)的可解性问题.定理4中在边界条件只为(I-(T+C))(D(T)∩(э)G)(∪)(^-G)的情况下用L-S度理论考虑了方程0∈-(T+C)(D(T)∩G)的可解性问题.这些定理推广了一些已有结果.

  • 标签: M-增生算子 凝聚映射 严格集压缩映射 凝聚映射同伦
  • 简介:考虑有限维空间Rn(n>1)中目标映射是仿凸锥映射的向量优化问题.通过对偶锥的端方向和标量函数的0-强制性给出了弱有效解集非空性和性的刻画.

  • 标签: 向量优化 弱有效解 仿凸锥映射 0-强制性
  • 简介:设(M^3,90)是非三维Riemann流形,其Ricci曲率非负,单射半径有正的下界,且当x→∞时数量曲率R(x)→0。则以(M^3,go)为初始值的Ricci流在M^3×[0,∞)上有长期解。这推广了马和朱最近的一个结果.在高维情形我们也有相应的结果,并且我们给Chau,Tam和Yu在Ktihler情形的类似定理一个新的证明。

  • 标签: RICCI流 无局部塌缩定理 拟局域定理 渐近体积比
  • 简介:本文仅用Malgrange预备定理和Haar积分得到了下述结果:设G为线性地作用于Rn上的李群,σ1,…,σk是P(Rn)G的一组极小齐次Hilbert基,并用<σ1,…,σk>表(Rn)由σ1,…,σk生成的理想。若(Rn)/>σ1,…,σk>作为实向量空间是有限维的,则芽f∈(Rn)G当且仅当存在芽g∈(Rk)使得f(X)=g(σ1(X),…,σk(X)),X=(x1,…,xn),即σ*(Rk)=(Rn)G.

  • 标签: 紧李群 不变量 函数芽 预备定理 注记 向量空间
  • 简介:本文研究抽象空间中一类具有非半群的半线性发展方程非局部问题.在非线性项满足适当增长条件的情形下,运用算子半群理论、Sadovskii不动点定理及凝聚映射的拓扑度不动点定理获得了所研究问题mild解的存在性.特别地,我们发现本文所得结论对抽象空间中的常微分方程非局部问题同样成立.最后,我们给出一个具体的抛物型偏微分方程非局部问题的例子来说明本文所得抽象结果的可行性.

  • 标签: 发展方程 非局部问题 算子半群 MILD解 非紧性测度 存在性
  • 简介:在本文中,作者研究了一种特殊的Banach空间,即Orlicz函数空间LM的子集A要构成LN-弱序列集合的充分必要条件是什么,给出了第一判别充要定理.

  • 标签: LN-弱序列紧性 Orlicz空间LM 弱序列紧性
  • 简介:研究局部对称共形平坦黎曼流形N^n+p(p≥2)中具有平等平均曲率向量的致子流形M^n的余维可约性问题,在n≥8的条件下得到了量佳拼挤常数.

  • 标签: 局部对称 共形平坦 平行平均曲率向量