简介:为提高光电平台的控制性能和稳定性,以平台反馈回路所用的光纤陀螺传感器为研究对象,对光纤陀螺角速率的历史输出、当前量测以及随机漂移进行融合补偿。采用双自回归模型确定了光纤陀螺时间序列输出的自回归多项式和光纤陀螺随机漂移的自回归关系。以陀螺当前输出为量测量,结合卡尔曼滤波算法将陀螺历史输出和历史随机漂移融合进状态方程,并进行随机漂移在线估计补偿。实验结果表明,光纤陀螺随机漂移的AR模型能达到90%拟合效果,经卡尔曼滤波补偿后随机漂移能降到1/10。该方法能很好地抑制光电平台三个框架轴光纤陀螺的随机漂移,补偿率为80%~90%。
简介:为了对微小型飞行器上的MIMU(微惯性测量单元)的随机漂移进行补偿,在比较了Mallat算法与átrous算法之后,基于小波变换与多尺度分析方法,提出了多尺度时间序列建模方法,它充分利用了átrous算法的快速性与时间平移不变性,将MEMS陀螺仪随机漂移进行多尺度分解。对各尺度上分解得到的信号进行重建,并对重建得到的各个信号进行时间序列建模。将各尺度时间序列模型的预测输出的和作为陀螺仪的随机噪声估计,对陀螺仪的随机漂移进行补偿。最后的实际数据建模表明该建模方法运算量小、建模速度快、精度高、模型适用性强,有很强的实际应用价值。
简介:针对随机时滞和异步相关噪声情况下的状态估计问题,提出了一种改进的高斯滤波算法(GF),并给出了其适用于高维系统的实现形式—随机时滞和异步相关容积卡尔曼滤波器(CKF-RDCN)。首先,通过满足Bernoulli分布的互不相关随机序列,来描述系统观测数据中可能存在的随机时滞现象,将量测噪声作为状态变量用以实现对观测时滞后验概率密度的估计。其次,利用一阶斯特林插值公式来近似估计,由于过程噪声和量测噪声异步相关,而导致的含有随机变量的多维积分问题。最后,依据三阶球径容积法则,给出了CKF-RDCN滤波算法的详细设计。此外,经典GF算法是所提出的改进GF算法的特例,其作为一个通用的非线性滤波算法框架,根据不同的后验概率密度估计方法,可以有不同的实现形式。仿真结果表明,相比于扩展卡尔曼滤波算法(EKF)以及容积卡尔曼滤波算法(CKF),CKF-RDCN在解决含有观测时滞和相关噪声系统的状态估计问题时,具有更高的精度和更好的数值稳定性。