学科分类
/ 23
451 个结果
  • 简介:用单调迭代的方法和一些新的比较结果,研究了Banach空间中一类事型非线性微分-积分方程的最大最小解,我们用空间E的弱完备和锥P的正规(这时可推出P是正则的)来代替紧条件。

  • 标签: 混合型微分-微分方程 单调迭方法 BANACH空间
  • 简介:利用非线性增生映射值域的扰动定理,研究了非线性椭圆边值问题(1)在Ls(Ω)空间中解的存在,其中max(N,2)≤p≤s<+∞.(1){-div{(C(x)+|▽u|2)p-2/2▽u}+|u|p-2u+g(x,u(x))=fa.e.x∈Ω-〈n,(C(x)+|▽u|2)p-2/2▽u〉∈βx(u(x))a.e.x∈Γ这里f∈Ls(Ω)给定,Ω()RN为有界锥形区域,n为Γ的外法向导数,g:Ω×R→R满足Caratheodory条件且对()x∈Γ,βx是正常、凸、下半连续函数ψx=ψ(x,·)的次微分,其中ψ:Γ×R→R.本文是对笔者以往一些工作的继续和补充.

  • 标签: 增生映射 demi连续映射 P-LAPLACE算子
  • 简介:本文提出了一种求解单调非线性方程组的非精确正则化牛顿方法,在较弱的局部误差界条件下,证明了该方法具有局部二次收敛,该方法是文献[4]中精确正则化牛顿法的推广.

  • 标签: 单调非线性方程组 非精确正则化牛顿法 局部收敛
  • 简介:考虑具有可控增长条件的非线性椭圆方程组弱解的部分正则.利用Duzaar和Grotowski引进的弱解部分正则证明的新方法,该方法是建立在调和逼近技巧一般形式的基础上的,我们把前人的结果由自然增长条件推广到了可控增长条件,并且所得到的弱解导数的Hoelder指标是最优的.

  • 标签: 非线性椭圆方程组 可控增长条件 调和逼近技巧 最优部分正则性
  • 简介:利用能量方法和单元正交分析方法,构造了特殊的Radau型单元正交展开和张量积分解,简明论证了一阶双曲方程组时空间断有限元的收敛,得到了丰满阶的整体误差估计.数值实验证实了这些理论结果.

  • 标签: 全离散有限元 双曲型方程组 收敛性 时空 一阶 间断有限元
  • 简介:利用重合度理论,研究了一类具多偏差变元高阶中立型泛函微分方程的周期解,获得这类方程至少存在和至多存在一个T一周期解的充分条件,其中周期解的先验界估计与方程的滞量有关.文中的主要结果改进和推广了相关文献的主要定理.

  • 标签: 高阶中立型微分方程 周期解 存在性和唯一性 重合度
  • 简介:通过建立比较定理,利用半序与上下解方法,在Banach空间研究了源弹性梁的—类四阶常微分方程两点边值问题的最大解与最小解的存在

  • 标签: 四阶常微分方程 边值问题 上下解方法
  • 简介:在一致凸Banach空间上,研究了半紧的非扩张压缩映象||Tx-Ty||≤||x-y||的Ishikawa型的三重迭代序列的收敛性问题,建立并证明了带误差的Ishikawa三重迭代逼近收敛定理,从而独特的推广了Mann和Ishikawa迭代方法,改进和发展了文献[1]-[7]的主要结果.

  • 标签: 一致凸BANACH空间 半紧的非扩张映射 Ishikawa型的三重迭代序列 不动点