简介:讨论了一类与年龄相关的时变种群扩散系统最优生育率控制的非线性问题,证明了最优生育率控制的存在性,并给出了控制为最优的必要条件及其由偏微分方程组和变分不等式组成的最优性组.这些结果可为时变种群扩散系统最优控制问题的实际研究提供理论基础.
简介:具有积分型非线性Schroedinger方程是在研究非线性Langrmuir波时考虑到离子惯性作用而导出的,本文讨论了二维空间中具有积分型非线性Schroedinger方程组的初值问题。用积分估计方法证明了整体解的存在唯一性。
简介:通过构建数据科技乌托邦,对火星移民计划的可持续性问题进行探讨。首先,对比火星与地球的异同点,根据移民的生存目标分析火星乌托邦的社会构成,并制定火星移民的选拔标准;其次,对火星乌托邦的人口分布情况运用Leslie人口模型进行动态演化,并基于人口的演化结果分析收入、教育、平等问题;采用生产法确定火星的经济生产总值,并建立双对数线性模型求解四大产业不同学历劳动者的工资增长函数;通过对火星教师数量与教育产出水平指标的评估,借鉴柯布-道格拉斯生产函数分析教育的投入与产出情况,综合考察火星教育的发展状况;再从人格尊严、经济产出、学历教育角度,引用基尼系数全面地评价火星乌托邦的平等问题,以验证火星移民计划的可行性与可持续性。
简介:利用上下解方法及Schauder不动点定理,证明了二阶非线性微分方程组三点边值问题:{y"=f(t,y,z,y',z')z"=g(t,y,z,y',z')y(-1)=A,y(1)=B,z(0)=C0,z'(0)=C1,解的存在性,并由此得到四阶非线性微分方程三点边值问题解的存在性,一定程度上推广了前人的一些结果.作为文章结果的应用,讨论了奇摄动四阶半线性三点边值问题,得到该问题解的存在性及解的渐近估计.