学科分类
/ 1
5 个结果
  • 简介:在分析传统测井岩性解释中存在的一些问题的基础上,从神经网络的机理、特点出发,探讨了利用神经网络技术进行测井岩性识别的可行性及优越性,并以找矿目的层为对象,进行了岩性分析与对比,为该方法的进一步应用开拓了前景。

  • 标签: 神经网络 结构算法 样本 岩性识别
  • 简介:在本文中用径向基础函数神经网络(或RBFN)根据地震属性预测通过测井得到的储层性质。对于由Hampson等人(2001年)提出的相同问题,还把用这一方法得到的结果与用广义回归神经网络(GRNN)得到的结果进行了比较。

  • 标签: 广义回归神经网络 测井特性 地震属性 预测 函数 基础
  • 简介:滩坝砂储集体具有分布较广、厚度较薄、空间分布不连续的特征。地震剖面上,通常是多个砂体以复合波的形式出现,很难形成单独的反射。滩坝砂储层信息的弱信号常被背景信息淹没,无法准确识别储层。针对滩坝砂储层的地震反射信号特点,将扩展交替投影神经网络算法引入到地震领域,对地震资料进行弱信号分离,并将算法应用到识别滩坝砂储层中,解析出砂体(组)在地震剖面上的展布特征。通过对理论模型及实际资料的试算,处理后的地震资料可以较好地展示储层展布特征,有利于滩坝砂体的识别。

  • 标签: 滩坝砂岩 神经网络 信号分离 储层预测