简介:据统计,世界有1/3的人口曾经感染乙肝病毒,约有3.5亿人是HBV携带者。如何预防和治疗乙肝一直是社会关注的焦点和医学与数学等交叉学科的重要课题。基于Nowak模型,建立了具免疫时滞因素HBV感染时滞微分方程模型,对该模型的动力学进行了分析,并应用Routh-Hurwitze定理及Lyapunov-Lasalle定理讨论了该模型平衡点的稳定性,分析了免疫时滞对系统动力学性质产生的影响。数值模拟验证了所得到的结果。
简介:研究一类带有临界指数项的非线性Choquard方程[-itu-Δu+V(x)u=(x-1*up)up-2u,(t,x)∈(R,R3),u(0,x)=u0(x)驻波解的轨道稳定性。0〈μ〈3p=2+(2-μ)/3。位势函数y(菇)在合适的假设下且ω充分大时,能够得到驻波解u=e^iwtφ的稳定性。