简介:本文首先建立了具有变时滞和分布时滞的Lotka-Volterra两种群脉冲合作系统.然后通过应用Gaines和Mawhin叠合度定理,研究得到了具有变时滞和分布时滞的Lotka-Volterra两种群脉冲合作系统正周期解存在性的充分条件.
简介:证明了转移函数是l∞的一个子空C1上的正的压缩C0半群,其极小生成元恰好是Markov积分算子半群的生成元在C1中的部分;Markov积分算子半群的生成元稠定的充分必要条件是q-矩阵Q一致有界;同时转移函数是Feller-Reuter-Riley的充要条件是Markov积分算子半群的生成元在c0中的部分产生一个强连续半群.最后,在序Banach空间给出了增加的压缩积分算子半群的生成定理.