简介:本文讨论了分段函数卷积的定限方法以及简便算法.
简介:根据联合国难民工作署和新闻报道的资料,选取难民进入欧洲的6条主要路径和11个主要的难民接收国进行难民流动研究。首先,通过分析难民接收国的人均GDP、人口数、面积和难民数,得到与其相关的难民接收能力指标和压力指标,并确定了难民流动率;然后,建立微分方程组来描述难民网络流,模拟难民流动状态,该模型描述了各国难民数随时间的变化;最后,建立了难民危机指标。这些结论对于难民问题的描述和预测有一定作用。
简介:1996年9月10日,《旧金山纪事报》的体育版上登载了《巨人队正式告别NL西区比赛》一文,宣布了旧金山巨人队输掉比赛的消息。当时,圣地亚哥教士队凭借80场胜利暂列西区比赛第一,旧金山巨人队只赢得了59场比赛,要想追上圣地亚哥教士队,至少还得再赢21场比赛才行。然而,根据赛程安排,巨人队只剩下20场比赛没打了,因而彻底与冠军无缘。有趣的是,报社可能没有发现,其实在两天以前,也就是1996年9月8日,巨人队就已经没有夺冠
简介:充分利用图的字典积的结构证明了以下结论:如果图G_1的每连通分支都非平凡,图G_2的阶数大于3,那么它们的字典积G_1[G_2]具有非零3-流.
简介:本文利用对非牛顿粘性不可压缩流方程对时间t的解析性和长时间渐近性估计,具体构造了它的近似惯性流形,并得出收敛阶估计。
简介:设计了一种最少自由度的无限元方法来实现三维Stokes绕流问题的求解.通过验证强制性和inf-sup条件,我们证明了相应的离散混合变分问题解的适定性,并在加权Sobolev空间中得到了误差的先验估计.数值实验结果验证了解的收敛性.
简介:介绍了流图模型的矩生成函数的计算及其鞍点逼近问题.给出了矩生成函数的另一种推导方法并利用Maple计算相关方程.利用矩模拟的方法进行参数估计,得到了概率密度函数、生存函数和危险函数的鞍点逼近.结果表明鞍点逼近算法能较好地捕捉实际函数曲线的动态演变,且达到了估计误差小和逼近精度高的预期目标.
简介:本文主要讨论了一类时滞微分方程生成的半流的不动点,并得到其相关性质。
简介:设(M^3,90)是非紧三维Riemann流形,其Ricci曲率非负,单射半径有正的下界,且当x→∞时数量曲率R(x)→0。则以(M^3,go)为初始值的Ricci流在M^3×[0,∞)上有长期解。这推广了马和朱最近的一个结果.在高维情形我们也有相应的结果,并且我们给Chau,Tam和Yu在Ktihler情形的类似定理一个新的证明。
简介:要设(Mn,go)(n奇数)是紧Riemannian流形,λ(go)〉0,这里λ(go)是算子-4△go+R(go)的第一特征值,R(go)是(Mn,go)的数量曲率.设以(Mn,go)为初值的规范化的Ricci流的极大解g(t)满足|R(g(t))|≤C和λ(对某个常数C一致成立).我们证明这个解有子列收敛于一个Ricci收缩孤立子.进一步,当n=3时,条件fM|Rm(g(t))+n/2dμt≤C可去.
简介:研究了红树林自然保护区自然环境和人类社会活动对于生态系统的影响,考虑了生物之间的相互关系,将生物量、生物生长的面积等作为主要指标,建立了常微分方程组模型,对生态系统的变化情况进行了描述,借助稳定性分析对方程进行了研究,并进行了数值模拟。根据理论分析和数值模拟的结果,对保护区的林木恢复工作提出了合理的建议。
分段函数卷积的定限及方法的改进
欧洲难民危机的网络流模型研究
网络流和棒球赛淘汰问题
图的字典积的非零整数流(英文)
非牛顿粘性不可压流方程的近似惯性流形
三维Stokes绕流问题的无限元逼近(英文)
基于流图模型的矩生成函数的计算及鞍点逼近
关于时滞微分方程生成的半流的不动点
关于非紧流形上的Ricci流的一个注记
关于奇数维流形上规范化的Ricci流的一个注记
红树林自然保护区湿地生态系统的数学模型及其应用