简介:theAlternatingSegmentCrank-Nicolsonschemeforone-dimensionaldiffusionequationhasbeendevelopedin[1],andtheAlternatingBlockCrank-Nicolsonmethodfortwo-dimensionalproblemin[2].Themethodshavetheadvantagesofparallelcomputing,stabilityandgoodaccuracy.Inthispaperforthetwo-dimensionaldiffusionequation,thenetregionisdividedintobands,aspecialkindofblock.ThismethodiscalledthealternatingBandCrank-Nicolsonmethod.
简介:In[1],ShenGuangyuconstructedseveralclassesofnewsimpleLiealgebrasofcharacteristic2,whicharecalledthevariationsofG2.Inthispaper,theauthorsinvestigatetheirderivationalgebras.ItisshownthatG2anditsvariationsallpossessuniquenondegenerateassociativeforms.TheauthorsalsofindsomenonsingularderivationsofViGfori=3,4,5,6,andtherebyconstructsomeleft-symmetricstructuresonViGfori=3,4,5,6.Someerrorsaboutthevariationsofsi(3,F)in[1]arecorrected.
简介:Theobjectinthispaperistoconsidertheproblemofexistence,uniqueness,explicilrepresentationof(0,2)-interpolationonthezerosof(1-x2)Pn-1(x)/xwhennisodd,wherePn-1denotesLegendrepolynomialofdegreen-1,andtheproblemofconvergenceofinterpolatorypolynomials.
简介:ForquadraticnumberfieldsF=Q(√2pl…pt-1)withprimespj≡1mod8,theauthorsstudytheclassnumberandthenormofthefundamentalunitofF.TheresultsgeneralizenicelywhathasbeenfamiliarforthefieldsQ(√2p)withaprimep≡1mod8,includingdensitystatements.Andtheresultsarestatedintermsofthequadraticformx2+32y2andillustratedintermsofgraphs.
简介:.Thesingle2dilationorthogonalwaveletmultipliersinonedimensionalcaseandsingleA-dilation(whereAisanyexpansivematrixwithintegerentriesand|detA|=2)waveletmultipliersinhighdimensionalcasewerecompletelycharacterizedbytheWutamConsortium(1998)andZ.Y.Li,etal.(2010).Butthereexistnomoreresultsonorthogonalmultivariatewaveletmatrixmultiplierscorrespondingintegerexpansivedilationmatrixwiththeabsolutevalueofdeterminantnot2inL2(R2).Inthispaper,wechoose2I2=(2002)asthedilationmatrixandconsiderthe2I2-dilationorthogonalmultivariatewaveletY={y1,y2,y3},(whichiscalledadyadicbivariatewavelet)multipliers.Wecallthe3×3matrix-valuedfunctionA(s)=[fi,j(s)]3×3,wherefi,jaremeasurablefunctions,adyadicbivariatematrixFourierwaveletmultiplieriftheinverseFouriertransformofA(s)(cy1(s),cy2(s),cy3(s))?=(bg1(s),bg2(s),bg3(s))?isadyadicbivariatewaveletwhenever(y1,y2,y3)isanydyadicbivariatewavelet.Wegivesomeconditionsfordyadicmatrixbivariatewaveletmultipliers.TheresultsextendedthatofZ.Y.LiandX.L.Shi(2011).Asanapplication,weconstructsomeusefuldyadicbivariatewaveletsbyusingdyadicFouriermatrixwaveletmultipliersandusethemtoimagedenoising.
简介:相对增益阵列(RGA)大多数应用的矩阵阶数都是较小的(n=2,3或4).我们从矩阵方程Φ(A)=1/2J2的实数解出发,应用矩阵方程Φ(A)=1/nJn的实数解在G-等价下的不变性和实数解的分块构造法,研究了Φ(A)=1/4J4的实数解的一些问题.
简介:1.IntroductionLetRbethecollectionofallrealnumbers,andZthecollectionofallintegers.Iff1(x)andf2(x)aretwofunctionsinL2(R),theinnerproduct