简介:用变分方法得到一类非线性差分方程多重周期解的存在性.我们的结果推广了Cai,Yu和Guo[Comput.Math.Appl.,52(2006),1630-1647]的结果,并且这里给出的证明显著地简化了.
简介:论文研究非自反Banach空间中Hille-Yosida算子的非线性Lipschitz扰动.首先,证明Hille-Yosida算子的非线性Lipschitz扰动诱导的微分方程的温和解构成非线性指数有界Lipschitz半群;其次,证明非线性扰动半群保持原半群的直接范数连续性质.获得的结果是线性算子半群某些结论的非线性推广.
简介:Inthispaper,weproposeaparallelGauss-Seideltypeiterativemethodforsolvingthelarge-scalesystemofnonlinearalgebraicequationsAφ(x)+Bψ(x)=b,whichisanasynchronousvariantofthesynchronousparallelnonlinearGauus-SeideltypemethodgivenbyR.E.White.Withalmostthesamebutsomewhatmorerelaxedconstrainteonthemultiplesplittings,weprovetheconvergenceandestimatetheconvergencerateofthenewmethod.