简介:在《数学分析》下册的学习中,我们开始学习多元函数的微积分,研究多元函数基本上有两种方法:1.多重法、2.一元法。n元函数y—f(x;,x。,…xn)有n>2个自变量,他们彼此无关,相互独立。在讨论n元函数时,要使n个自变量同时变化,这就是多重法。如:多元函数的极限、连续、可微、重积分、线面积分等。在研究多元函数的性质中,很多情况是将多元函数问题转化为一元函数的问题,从而应用已知的一元函数的性质得到我们所需要的多元函的性质。这就是一元法。如累次极限、偏导数、累次积分等。本文就如何应用一元法解决多元函数的问题,亦既如何将“多”转化为“单”给出两种最基本也是最常用的方法。一、折线法:在研究二元函数f(XJ)在两点A(X;,y;),B(X;,y。)的函数值之差时,即:凸一f(X;,y;)一f(X。,y。)时,多用此方法。其作法是:补加一点C(X;,y。)或C(Xz,y;),要求线段AC与CB属于f(Xq)的定义域,这时:Q一f(x;,y;)一f(x。,y。)=Ef(x;,y;)一f(x;,y2)〕+[f(x;,y。)一f(x。,y。)口在第一个括号内:变量x不发生变化,既x=x;,而仅仅是变量y从y;变化到y。。在第二个括号内:变量y不发生变化,既y—y。,而仅仅是变量X从X;变化X。。见下图Yx-xryilrt\ys。”T回”,i/故我们可以把它们?