简介:Inthispaper,anexponentialinequalityforthemaximalpartialsumsofnegativelysuperadditive-dependent(NSD,inshort)randomvariablesisestablished.Byusingtheexponentialinequality,wepresentsomegeneralresultsonthecompleteconvergenceforarraysofrowwiseNSDrandomvariables,whichimproveorgeneralizethecorrespondingonesofWangetal.[28]andChenetal.[2].Inaddition,somesufficientconditionstoprovethecompleteconvergenceareprovided.Asanapplicationofthecompleteconvergencethatweestablished,wefurtherinvestigatethecompleteconsistencyandconvergencerateoftheestimatorinanonparametricregressionmodelbasedonNSDerrors.
简介:Basedonlefttruncatedandrightcensoreddependentdata,theestimatorsofhigherderivativesofdensityfunctionandhazardratefunctionaregivenbykernelsmoothingmethod.Whenobserveddataexhibitα-mixingdependence,localpropertiesincludingstrongconsistencyandlawofiteratedlogarithmarepresented.Moreover,whenthemodeestimatorisdefinedastherandomvariablethatmaximizesthekerneldensityestimator,theasymptoticnormalityofthemodeestimatorisestablished.
简介:Inthispaper,twofinitedifferencestreamlinediffusion(FDSD)schemesforsolvingtwo-dimensionaltime-dependentconvection-diffusionequationsareconstructed.Stabilityandoptimalordererrorestimati-ionsforconsideredschemesarederivedinthenormstrongerthanL~2-norm.
简介:Consideramultidimensionalrenewalriskmodel,inwhichtheclaimsizes{Xk,k≥1}formasequenceofindependentandidenticallydistributedrandomvectorswithnonnegativecomponentsthatareallowedtobedependentoneachother.Theunivariatemarginaldistributionsofthesevectorshaveconsistentlyvaryingtailsandfinitemeans.Supposethattheclaimsizesandinter-arrivaltimescorrespondinglyformasequenceofindependentandidenticallydistributedrandompairs,witheachpairobeyingadependencestructure.Apreciselargedeviationforthemultidimensionalrenewalriskmodelisobtained.
简介:Undersomemildconditions,wederivetheasymptoticnormalityoftheNadaraya-Watsonandlocallinearestimatorsoftheconditionalhazardfunctionforleft-truncatedanddependentdata.TheestimatorswereproposedbyLiangandOuld-Sai'd[1].TheresultsconfirmtheguessinLiangandOuld-Said[1].
简介:
简介:InInternetenvironment,trafficflowtoalinkistypicallymodeledbysuperpositionofON/OFFbasedsources.DuringeachON-periodforaparticularsource,packetsarriveaccordingtoaPoissonprocessandpacketsizes(henceservicetimes)canbegenerallydistributed.Inthispaper,weestablishheavytrafficlimittheoremstoprovidesuitableapproximationsforthesystemunderfirst-infirst-out(FIFO)andwork-conservingservicediscipline,whichstatethat,whenthelengthsofbothON-andOFF-periodsarelightlytailed,thesequencesofthescaledqueuelengthandworkloadprocessesconvergeweaklytoshort-rangedependentreflectingGaussianprocesses,andwhenthelengthsofON-and/orOFF-periodsareheavilytailedwithinfinitevariance,thesequencesconvergeweaklytoeitherreflectingfractionalBrownianmotions(FBMs)orcertaintypeoflongrangedependentreflectingGaussianprocessesdependingonthechoiceofscalingasthenumberofsuperposedsourcestendstoinfinity.Moreover,thesequencesexhibitastatespacecollapse-likepropertywhenthenumberofsourcesislargeenough,whichisakindofextensionofthewell-knownLittle’slawforM/M/1queueingsystem.Theorytojustifytheapproximationsisbasedonappropriateheavytrafficconditionswhichessentiallymeanthattheserviceratecloselyapproachesthearrivalratewhenthenumberofinputsourcestendstoinfinity.
简介:Epidemiologicstudiesuseoutcome-dependentsampling(ODS)schemeswhere,inadditiontoasimplerandomsample,therearealsoanumberofsupplementsamplesthatarecollectedbasedonoutcomevariable.ODSschemeisacost-effectivewaytoimprovestudyefficiency.Wedevelopamaximumsemiparametricempiricallikelihoodestimation(MSELE)fordatafromatwo-stageODSschemeundertheassumptionthatgivencovariate,theoutcomefollowsagenerallinearmodel.Theinformationofbothvalidationsamplesandnonvalidationsamplesareused.Whatismore,weprovetheasymptoticpropertiesoftheproposedMSELE.
简介:Thenumericalsolutionoflargescalemulti-dimensionalconvectiondiffusionequationsoftenrequiresefficientparallelalgorithms.Inthiswork,weconsidertheextensionofarecentlyproposednon-overlappingdomaindecompositionmethodfortwodimensionaltimedependentconvectiondiffusionequationswithvariablecoefficients.Bycombiningpredictor-correctortechnique,modifiedupwinddifferenceswithexplicitimplicitcoupling,themethodunderconsiderationprovidesintrinsicparallelismwhilemaintaininggoodstabilityandaccuracy.Moreover,formulti-dimensionalproblems,themethodcanbereadilyimplementedonamulti-processorsystemanddoesnothavethelimitationonthechoiceofsubdomainsrequiredbysomeothersimilarpredictor-correctororstabilizedschemes.Thesepropertiesofthemethodaredemonstratedinthisworkthroughbothrigorousmathematicalanalysisandnumericalexperiments.
简介:Inthispaper,stochasticglobalexponentialstabilitycriteriafordelayedimpulsiveMarkovianjumpingreaction-diffusionCohen-Grossbergneuralnetworks(CGNNsforshort)areobtainedbyusinganovelLyapunov-Krasovskiifunctionalapproach,linearmatrixinequalities(LMIsforshort)technique,It?formula,Poincar′einequalityandHardy-Poincaréinequality,wheretheCGNNsinvolveuncertainparameters,partiallyunknownMarkoviantransitionrates,andevennonlinearp-Laplacediffusion(p>1).ItisworthmentioningthatellipsoiddomainsinRm(m≥3)canbeconsideredinnumericalsimulationsforthefirsttimeowingtothesyntheticapplicationsofPoincar′einequalityandHardy-Poincar′einequality.Moreover,thesimulationnumericalresultsshowthateventhecorollariesoftheobtainedresultsaremorefeasibleandeffectivethanthemainresultsofsomerecentrelatedliteraturesinviewofsignificantimprovementintheallowableupperboundsofdelays.