简介:针对磁悬浮飞轮储能系统的“磁悬浮飞轮一发电机”机电耦合非线性动力学特性进行研究.通过推导磁悬浮飞轮储能系统在偏心条件下的动能、势能、发电机系统的磁场能以及系统的耗散函数,由Lagrange—Maxwell方程建立磁悬浮飞轮系统和两相四极永磁发电机系统的机电耦合动力学方程.采用数值法对0.6MW磁悬浮飞轮储能系统进行了仿真分析,研究结果表明,系统机电耦合非线性方程存在稳定的与转速同频的基频和三倍频周期运动解,且基频振动幅值比三倍频振动幅值大.对于稳定的磁悬浮储能飞轮机电耦合系统,飞轮转速增大,或磁轴承系统刚度减小或阻尼增大,或磁场能(电枢反应磁场能或永磁励磁磁场能)减小,可使系统的非线性振动幅值减小.而增大磁轴承系统的刚度,或减小磁轴承系统的阻尼,或增大系统的磁场能有可能破坏机电耦合系统的稳定性,使飞轮失稳.
简介:针对地球静止轨道空间碎片清除需求,开展了服务星通过绳索拖拽空间碎片离轨多体动力学与控制仿真研究.分析了在轨拖拽期间系统拓扑构型,采用递推方法推导了考虑地球J2摄动的服务星和空间碎片柔性多体动力学方程组,建立了基于集中参数法的绳索动力学模型,通过约束方程将绳索与服务星和空间碎片相连接,建立了服务星姿态控制力矩方程,最后形成了服务星在轨拖拽空间碎片期间柔性多体系统多体动力学方程.通过悬链线模型与本文采用的集中参数模型的比较验证了本文采用的柔性绳索模型的正确性,然后通过数值仿真分析了与服务星质量接近的空间碎片被拖动期间动力学特性,为这类航天器总体设计及空间碎片清除策略制定提供了参考依据.
简介:对构造的单边碰撞悬臂梁系统进行实验的定性研究,在基础激励实验中,变换多次激励频率,通过加速度传感器测量悬臂梁测点的响应信号,并通过力传感器测量得到限位器与柔性悬臂梁之间的碰撞力.通过Matlab软件对实测响应的时、频域分析处理,观察到系统复杂的周期、概周期、混沌等多种运动形式,并发现其中运动形式变化的区间存在突变.尝试对实验时域数据计算最大Lyapunov指数,以进一步验证其中混沌的存在,进一步发现了混沌响应下末端加速度响应与碰撞力的传递函数具有频响函数特征.实验研究体现了非线性动力学现象,也对分析应用混沌运动的实验结果提供了一个新视角.
简介:本文对带质量块的微型双稳态压电板进行动力学分析.以中心固支四边自由的带质量块微型压电层合板为研究对象,应用应变梯度理论考虑尺寸效应,综合考虑力、电、热耦合作用,采用VonKarman大变形理论,运用Hamilton原理建立非线性动力学方程.利用特征值法探究不同内禀长度和不同压电铺设面积的情况下,温度和电压对其固有频率和稳定性的影响.其次研究了不同外激励下系统的非线性动力学响应.通过本文的研究发现,随着压电铺设面积的增大,力、电、热耦合效应增强,对系统的稳定性影响越显著;通过研究温度和电压对系统振动幅值的影响为振动控制提供了理论依据.同时发现尺寸效应对结构刚度影响较大,验证了微型结构考虑尺度效应的必要性.本文的研究结果会为今后的工程实际应用提供一定的理论参考价值.
简介:从考虑损伤的粘弹性材料的一种卷积型本构关系出发,建立了在有限变形下损伤粘弹性Timoshenko梁的控制方程.利用Galerkin方法对该组方程进行简化,得到一组非线性积分-常微分方程.然后应用非线性动力学数值分析方法,如相平面图,Poincare截面分析了载荷参数对非线性损伤粘弹性Timoshenko梁动力学性能的影响.特别考察了损伤对粘弹性梁的动力学行为的影响.
简介:根据古典阴阳互补和现代对偶互补的基本思想,通过罗恩早已提出的一条简单而统一的新途径,系统地建立了弹性膜结构动力学的各类非传统Hamilton型变分原理.这种新的非传统Hamilton型变分原理能反映这种动力学初值一边值问题的全部特征.文中首先给出膜结构动力学的广义虚功原理的表式,然后从该式出发,不仅能得到膜结构动力学的虚功原理,而且通过所给出的一系列广义Legendre变换,还能系统地成对导出弹性膜结构动力学的5类变量(Pα,Pβ,pγ,Vα,Vβ,Vγ,Nα,Nβ,Sαβ,εα,εβ,εαβ,u,v,w)、4类变量(Pα,Pβ,pγ,Vα,Vβ,Vγ,Nα,Nβ,Sαβ,εα,εβ,εαβ,u,v,w)、3类变量(Nα,Nβ,Sαβ,εα,εβ,εαβ,u,v,w)和2类变量(Nα,Nβ,Sαβ,u,v,w)非传统Hamilton型变分原理的互补泛函、以及相空间(Pα,Pβ,pγ,u,v,w)非传统Hamilton型变分原理的泛函与1类变量(u,v,w)非传统Hamilton型变分原理势能形式的泛函.同时,通过这条新途径还能清楚地阐明这些原理的内在联系.
简介:线弹性静力学中有最小势能原理和最小余能原理,但只适用于物体或结构在给定约束条件下处于稳定平衡状态的情况,而在一般情况下动力学问题不可能存在稳定平衡状态,因此在动力学领域中是否存在最小势能原理值得认真考虑.本文对动力学问题中存在最小势能原理的可能性进行了探讨,并以摆脱了"平衡态"和"稳定态"的限制的最小功耗原理为理论基础,导出了线弹性动力学中的最小势能原理和最小余能原理.给出了计算实例,结果正确.因此在线弹性动力学中存在瞬时意义下的最小势能原理和最小余能原理.但其含义与静力学中的最小势能原理和最小余能原理并不相同.其主要区别在于:动力学中的原理适用于不稳定过程之任一瞬时,其"最小"是指"当时(即该瞬时)所有可能值的最小".而静力学中的最小势能原理则只适用于稳定平衡状态,其"最小"是指系统从不稳定最后达到稳定平衡的整个过程中所有"真实值中的最小".即前者是"当时的最小",后者则是"全过程中的最小".这两类变分原理可成为线弹性动力学中各种变分直接解法的理论基础.