简介:在一致凸的Banach空间中,采用新的证明方法研究了严格渐近伪压缩映象和渐近非膨胀映象带误差的修正的Mann和Ishikawa迭代程序的收敛性问题,不要求定义域、值域有界,且迭代系数更简单.
简介:本文在实的Banach空间中证明了带误差的Ishikawa迭代序列强收敛到强伪压缩算子T的不动点。并用带误差的Ishikawa迭代序列逼近强增生算子方程的解。推广文献[5]的结果到带误差的Ishikawa迭代序列。
简介:本文在Hibea空间中,利用CKQ方法证明了涉及渐近非扩张映象的修改Ishikawa迭代序列强收敛到其不动点的一个定理.
简介:在Banach空间中构造了一致L—Lipschitzian渐近伪压缩映象的lshikawa型误差迭代序列,研究了其对相应不动点的黏性逼近及其收敛性问题,所得结果发展和改进了文[1-9]中的相应结果。
简介:讨论了局部凸拓扑向量空间中凝聚映象的不动点,从而获得了一些新的不动点定理。
简介:研究了严格凸Banach空间中非空间凸子集上拟非扩展映象的不动点的迭代逼近问题,主要证明了:设E是严格凸Banach空间,K为E的闭凸子集,T:K→K为连续拟非扩展映象.进一步假设T(K)包含于K的一个紧子集之中,迭代地定义序列{xn}∞n=1如下:(IS)yn=(1-βn)xn+βnTxn,n≥1,xn+1=(1-αn)xn+αnTyn,n≥1,其中{αn}和{βn}满足一定的条件,则{xn}强收敛于T的某个不动点.