简介:利用Leggett—Williams不动点定理,研究了二阶时滞微分方程边值问题{y"(t)+f(t,y(t-τ))=0,0〈t〈2π;y(t)=0,-τ≤t≤0;y(0)=y(2π)正解的存在性.其中0〈r〈π/2为一常数.我们先建立了该问题至少存在两个正解的充分条件.接着给出其至少存在三个正解的存在定理.
简介:本文研究一类具有状态时滞和输入时滞的时变时滞线性中立型系统.首先,通过选取合适的Lya—punov—Krasovskii泛函。应用LMI方法和Lyapunov—Krasovskii稳定性定理对时滞相关的系统进行稳定性分析,并设计了相应的控制器.改进了时不变时滞线性系统方面的一些结果.最后用实例验证所得到结果.
简介:提出并研究具有反馈控制变量和Holling-Ⅱ类功能性反应的修正Leslie-Gower离散捕食系统的持久性问题,通过运用差分不等式得到了一组保证该系统持久的充分性条件.该结果表明反馈控制变量不会影响系统的持久性从而改进了已有的结果.数值模拟显示了本文结果的可行性.
简介:应用LeraySchauder不动点定理,研究了一类具时滞的Rayleigh型泛函微分方程:x″(t)+f(x′(t))+g(x(t-τ(t)))=e(t)的反周期解问题,得到了反周期解存在的新的结果。
简介:考虑含分布时滞的退化中立型系统的鲁棒稳定性.利用算子Ω的稳定性和线性矩阵不等式得到一个新的鲁棒稳定性判据,本判据将中立型时滞、时变离散时滞、时变分布时滞和退化中立型系统一起考虑,相比已有文献具有较低的保守性.利用Matlab可以验证本判据的有效性.