简介:考察Hardy空间H^2(T)上的解析Toeplitz算子的局部谱,得到的主要结果是:当φ∈H^∞(T)时,A↓∈H^2(T),x≠0,σTφ(x)=σ(Tφ).
简介:讨论了Dirichlit空间上Toeplitz算子的紧性,特别地得到了Schatlen类Toeplitz算子的特征,此外,还证明了关于Toeplitz算子的一个非稠密性定理,并证明一个非零的函数可以诱导一个零算子,这与Hardy空间及Bergman空间情形是一重大差别。
简介:对[0,2π]年的区间I,对它的左右两个半区间L,R,定义一种加权原子形如b(t)=1/(p(t))[X1-XR(t)],其中ρ为满足某些性质的非负函数,加权原子b(t)的线性组合构成加权原子空间B(ρ),本文证明了如果f∈B(ρ),则f的Fourier级数的Cesaro平均几乎处处收敛。
简介:引入点态非方常数的定义并给出其等价表达形式,同时给出点态非方常数在赋Luxemburg范数Orlicz序列空间和Orlicz函数空间的估计以及在1p和Lp空间的计算值.
简介:讨论单位圆盘中Dirichlet空间上Toeplitz算子的性质,给出了Dirichiet空间上以一类连续函数为符号的Toeplitz算子满足亚正规性的充分必要条件.
简介:研究了调和Dirichlet空间上调和符号的小Hankel算子的乘积,给出了此类小Hankel算子交换性和乘积为零的完全刻画.