学科分类
/ 14
265 个结果
  • 简介:拓扑空间是现代数学中的一个重要的基本概念.在集合上建立拓扑空间的方法很多,通常用开集公理来刻划,也可以选取点的邻域系,闭集,集合的闭包和内部等作为拓扑的原始概念.本文选取集合的边界作为原始概念,在集合上建立拓扑空间.

  • 标签: 拓扑空间 边界运算 闭包 集合
  • 简介:在一致空间X的全体Cauchy网构成的集合X中,引入等价类,得到了商空间X.进一步,在X中构造了一致结构基,证明了X在该一致结构下是完备的,且一致空间X一致同胚于X的稠密一致子空间.此外,在一致同胚意义下一致空间X的完备化空间是唯一的.这个定理可以看作完备化定理的统一形式.

  • 标签: 商空间 一致结构基 完备化空间 一致同胚
  • 简介:讨论了Dirichlit空间上Toeplitz算子的紧性,特别地得到了Schatlen类Toeplitz算子的特征,此外,还证明了关于Toeplitz算子的一个非稠密性定理,并证明一个非零的函数可以诱导一个零算子,这与Hardy空间及Bergman空间情形是一重大差别。

  • 标签: DIRICHLET空间 TOEPLITZ算子 凸型算子 紧性 SCHATLEN类
  • 简介:研究Banach空间中积分双半群的生成条件.利用算子A的豫解算子,给出了积分双半群T(t)的生成定理.结果表明:如果对任意的x∈X,f∈X*,以及()|λ|≤δ,λ∈ρ(A),有∈Lp(R),则存在算子族S(t),t∈R,S(t)强连续且满足积分双半群的定义.

  • 标签: BANACH空间 积分双半群 生成条件
  • 简介:本文利用广义正交(“⊥”)这一工具,给出了在不自反的Banach空间中多值算子P为集值度量投影PL的充要条件是(i)P^-1(O)=L(⊥),(ii)∨x∈X,∨y∈L,P(x+y)=P(z)+Y,我们的结果推广了文[2]的在自反空间中且P为单值度量投影的相应结论;还得到了L(⊥)为线性子空间的充要条件是PL为有界线性算子;进而得到了L广义正交拓扑可补的充要条件是PL为有界线性算子,丰富了文[1,9]的结论.

  • 标签: BANACH空间 广义正交 广义正交可补 度量投影
  • 简介:设(E,S,Ω,f)是随机结构空间,当(E,S,Ω,f)是随机度量空间,随机赋范空间,随机内积空间时,其向量的随机度量,随机范数,随机内积是随机变量.证明了它们的数学期望分别是拟度量,拟范数,内积.应用关于数学期望的结果,进而得到了随机Hilbert空间中线性连续泛函的Riesz表示定理.

  • 标签: 随机度量 随机内积 随机变量 数学期望 表示定理 随机拓扑空间
  • 简介:对[0,2π]年的区间I,对它的左右两个半区间L,R,定义一种加权原子形如b(t)=1/(p(t))[X1-XR(t)],其中ρ为满足某些性质的非负函数,加权原子b(t)的线性组合构成加权原子空间B(ρ),本文证明了如果f∈B(ρ),则f的Fourier级数的Cesaro平均几乎处处收敛。

  • 标签: CESARO算子 FOURIER级数 加权原子空间 Dirichlet核
  • 简介:结合Banach空间的Drop性,利用K维体积给出了K-强凸空间的一个新的定义,同时也给出了K-强光滑空间定义的K维体积表示,然后利用单位圆的切片证明了K-强凸空间是自反空间,进而证明了K-强凸空间与K-强光滑空间是一对对偶空间.最后利用Drop性的切片描述证明了K-强凸空间具有Drop性.

  • 标签: K-强凸空间 BANACH空间 Drop性 K维体积表示 自反空间 对偶空间
  • 简介:讨论单位圆盘中Dirichlet空间上Toeplitz算子的性质,给出了Dirichiet空间上以一类连续函数为符号的Toeplitz算子满足亚正规性的充分必要条件.

  • 标签: DIRICHLET空间 TOEPLITZ算子 亚正规性 拟齐次
  • 简介:设F是任意域,n≥4是一个正整数.令Kn(F)是F上n×n交错阵空间.对于A,B∈Kn(F),如果rankA=rankB,则称A和B是秩等价的.本文主要刻画Kn(F)上的保秩等价的线性算子,并给出一些应用.

  • 标签: 秩等价 交错阵