简介:我们将得到广义凸空间上VonNeumann-Fan型supinfsup不等式,我们的结果对文[1]和[2]中的相应结论进行了改进和一般化.
简介:研究可分Banach空间中一类混合型的微分—积分包含,证明了解的存在性,其单值情形改进和推广了文[1~3]中关于混合型微分—积分方程的若干存在性结果。
简介:利用临界点理论中的山路引理,研究一类分数阶Kirchhoff型方程在次临界增长条件下非平凡解的存在性,进一步统一和丰富了已有文献的相关结果.
简介:本文主要是研究连续变量遗传系统Volterra方程的第二型,即x(t+h0)=η(t+h0)+F(t,(x(t),x(t—ht)…,x(t-h0)的p-均值可积性.同时举例说明了此方程的Lyapunov泛函的构造,以及利用Lyapunov泛函证明了例子的均方可积性.