简介:在这篇论文,我们在不同计算设定在n宽度上从空格l_p(1≤p≤2)为斜操作符T把一些最佳的算法给l_2。
简介:LetL=L0+VbethehigherorderSchrdigertypeoperatorwhereL0isahomogeneousellipticoperatoroforder2mindivergenceformwithboundedcoefficientsandVisarealmeasurablefunctionasmultiplicationoperator(e.g.,including(-?)m+V(m∈N)asspecialexamples).Inthispaper,assumethatVsatisfiesastronglysubcriticalformconditionassociatedwithL0,theauthorsattempttoestablishatheoryofHardyspaceHpL(Rn)(0
简介:本文首先给出integralfromato+∞f(x)dx收敛≠lim+∞f(x)=0的一更强的例子,然后给出一个与级数收敛的必要条件类似的,integralfromato+∞f(x)dx收敛的必要条件。在许多工科高等数学教材中,广义积分敛散性的判别,一般都在级数中讨论,因而一部分同学和个别教师往往把级数的一些重要性质,直接推广到广义积分integralfromato+∞f(x)dx上。最典型的错误是把级数收敛的必要条件推广到广义积分上,即integralfromato+∞f(x)dx收敛?lim?+∞f(x)=0.这类错误较为普遍。
简介:Theexistenceofapathwiseuniquestrongsolutionforthestochasticdifferentialequation(S.D.E.)withPoissonjumpsinn-dimensionalspacewithoutcontinuityassumptionondriftcoefficient,whichevencanbegreaterthanlineargrowth,andwithoutLipschitzconditionondiffusioncoefficientsisobtained.ThentheexistenceofapathwisestochasticoptimalBang-Bangcontrolforaverymuchnon-linearsystemwithPoissonjumpsinn-dimensionalspaceisderived.Theresultisalsoappliedtoobtainamaximumlikelihoodestimate(MLE)ofparameterforsomecontinuous,S.D.E.withnon-Lipschitzoeffieientsinn-dimensionalspace.
简介:记D={(t1,…,tn):(t1,…,tn)∈R+^n且tj=fj(t1,…,tn)为非负单增函数且一阶偏导散均存在(j=k+1,…,n,1≤k