学科分类
/ 8
149 个结果
  • 简介:从连续介质力学中关于弹性薄板的变形理论出发,讨论绕轴作大范围运动的弹性薄板的动力学性质.由于在无大范围运动的情况下,弹性薄板的变形对系统的动力学性质影响很小而被忽略,而其一旦与大范围运动耦合,对系统的动力学性质产生明显的影响.根据弹性薄板的应变-位移几何非线性关系,建立了作大范围运动弹性薄板的几何非线性动力学方程,然后利用Garlerkin模态截断方法建立了该系统的离散动力学方程,仿真计算验证了理论分析的正确性,从而表明了系统的横向振动是稳定的.

  • 标签: 高速转动 薄板 刚-柔耦合 几何非线性
  • 简介:从考虑损伤的粘弹性材料的一种卷积型本构关系出发,建立了在有限变形下损伤粘弹性Timoshenko梁的控制方程.利用Galerkin方法对该组方程进行简化,得到一组非线性积分-常微分方程.然后应用非线性动力学数值分析方法,如相平面图,Poincare截面分析了载荷参数对非线性损伤粘弹性Timoshenko梁动力学性能的影响.特别考察了损伤对粘弹性梁的动力学行为的影响.

  • 标签: 损伤粘弹性固体 Timosenko梁 几何非线性 混沌 非线性动力学
  • 简介:把谱元法应用于刚架结构的动力学响应计算和分析中.建立了杆和梁的谱单元动力学刚度阵,针对刚架结构组装了整体动力学刚度阵,建立了整体结构的运动方程,计算了结构的固有频率和时域响应,并与采用有限元方法得到的结果进行了对比.从结果中可以看出谱元法在数值模拟中的独特优势.

  • 标签: 谱元法 刚架结构 固有频率 时域响应
  • 简介:针对多体系统动力学微分-代数方程求解问题,研究基于Lie群表达的约束稳定方法.首先引入新的Lagrange乘子,结合位移约束、速度级约束和加速度级约束方程,构造了新的Lie群微分-代数方程.然后使用向后差商隐式方法和CG(Crouch-Grossman)方法,对微分–代数方程进行离散求解,得到精确度较高的动力学仿真结果.该方法在精确保持各级约束方程的同时,保持旋转矩阵的正交性,并且使系统总能量误差较小.

  • 标签: 多体系统动力学 微分-代数方程 LIE群 约束稳定
  • 简介:根据古典阴阳互补和现代对偶互补的基本思想,通过罗恩早已提出的一条简单而统一的新途径,系统地建立了弹性膜结构动力学的各类非传统Hamilton型变分原理.这种新的非传统Hamilton型变分原理能反映这种动力学初值一边值问题的全部特征.文中首先给出膜结构动力学的广义虚功原理的表式,然后从该式出发,不仅能得到膜结构动力学的虚功原理,而且通过所给出的一系列广义Legendre变换,还能系统地成对导出弹性膜结构动力学的5类变量(Pα,Pβ,pγ,Vα,Vβ,Vγ,Nα,Nβ,Sαβ,εα,εβ,εαβ,u,v,w)、4类变量(Pα,Pβ,pγ,Vα,Vβ,Vγ,Nα,Nβ,Sαβ,εα,εβ,εαβ,u,v,w)、3类变量(Nα,Nβ,Sαβ,εα,εβ,εαβ,u,v,w)和2类变量(Nα,Nβ,Sαβ,u,v,w)非传统Hamilton型变分原理的互补泛函、以及相空间(Pα,Pβ,pγ,u,v,w)非传统Hamilton型变分原理的泛函与1类变量(u,v,w)非传统Hamilton型变分原理势能形式的泛函.同时,通过这条新途径还能清楚地阐明这些原理的内在联系.

  • 标签: 非传统Hamilton型变分原理 膜结构 几何非线性 弹性动力学 对偶互补 初值-边值 问题 相空间
  • 简介:考虑了剪滞翘曲应力自平衡条件、剪切变形和剪力滞后效应等因素的影响,本文提出了一种对宽翼薄壁T形梁动力学特性的分析方法.分析中为了准确反应T形梁翼板的动位移变化,三个广义动位移被引入,且以能量变分原理为基础建立了T形梁动力反应的控制微分方程和自然边界条件,据此对T形梁的动力反应特性进行了分析,揭示了T形梁桥动力反应的规律.算例中,对比了考虑和不考虑剪滞翘曲应力自平衡条件对T形梁动力反应的影响,结果显示考虑剪滞翘曲应力自平衡条件的计算方法与有限元数值解吻合更好.

  • 标签: T形梁 剪力滞后 自平衡条件 动力反应 能量变分原理
  • 简介:利用多体分析软件ADAMS建立了多自由度汽车整车多体动力学仿真模型,并进一步简化为15自由度非线性模型,结合2自由度线性模型建立PID控制策略,进行了冰面单周正弦工况下的汽车操纵稳定性仿真试验研究,采用自适应模拟退火算法与非线性序列二次规划法相结合的组合优化方法对控制系统的控制参数进行了分析和优化.结果表明,该控制方法能够大幅度提高车辆的操纵稳定性和安全性,能够适应复杂的路面和行驶工况,取得了良好的效果.

  • 标签: 车辆稳定性控制 多体系统动力学 联合仿真 PID控制 优化
  • 简介:线弹性静力学中有最小势能原理和最小余能原理,但只适用于物体或结构在给定约束条件下处于稳定平衡状态的情况,而在一般情况下动力学问题不可能存在稳定平衡状态,因此在动力学领域中是否存在最小势能原理值得认真考虑.本文对动力学问题中存在最小势能原理的可能性进行了探讨,并以摆脱了"平衡态"和"稳定态"的限制的最小功耗原理为理论基础,导出了线弹性动力学中的最小势能原理和最小余能原理.给出了计算实例,结果正确.因此在线弹性动力学中存在瞬时意义下的最小势能原理和最小余能原理.但其含义与静力学中的最小势能原理和最小余能原理并不相同.其主要区别在于:动力学中的原理适用于不稳定过程之任一瞬时,其"最小"是指"当时(即该瞬时)所有可能值的最小".而静力学中的最小势能原理则只适用于稳定平衡状态,其"最小"是指系统从不稳定最后达到稳定平衡的整个过程中所有"真实值中的最小".即前者是"当时的最小",后者则是"全过程中的最小".这两类变分原理可成为线弹性动力学中各种变分直接解法的理论基础.

  • 标签: 最小势能原理 最小余能原理 弹性动力学 动力学问题 平衡状态 理论基础
  • 简介:航空发动机整机振动历来是发动机研发设计中不可忽视的重要部分,而机匣作为发动机的骨架,它的振动直接反映了发动机整机振动的水平.本文分析了航空发动机机匣动力学问题及故障分类,综述了机匣动力学的国内外发展现状与趋势、问题及解决的办法,并阐述了航空发动机机匣包容性问题的发展现状,最后提出了适合我国航空发动机技术水平的机匣发展设想.

  • 标签: 机匣动力学 机匣包容性问题 薄壁圆壳结构 声激励响应 高频振动
  • 简介:根据Timoshenko几何变形假设和Boltzmann叠加原理,推导出控制损伤粘弹性Timoshenko中厚板的非线性动力方程以及简化的Galerkin截断方程组;然后利用非线性动力系统中的数值方法求解了简化方程组.通过分析可知,板在谐载荷的作用下,具有非常丰富的动力学特性.同时研究了板的几何参数、材料参数及载荷参数对损伤粘弹性中厚板动力学行为的影响.

  • 标签: 损伤粘弹性固体 中厚板 几何非线性 非线性动力系统 分义 混沌
  • 简介:针对多体系统动力学数值仿真问题,研究基于Hermite插值的离散变分方法.首先对广义坐标和广义速度进行Hermite插值,结合Gauss数值积分方法,利用Hamilton原理和离散力学变分原理,建立了含已知导数信息和含未知导数信息的Hermite插值离散变分数学模型,求解得到精确度较高的动力学仿真结果.该方法可以在步长较大时精确保持约束方程,并保持系统总能量在一定范围内有界变化,适用于长时间仿真情况.

  • 标签: 多体系统动力学 离散变分方法 HERMITE插值 高斯求积
  • 简介:研究了两端受扭转弹簧约束的简支输流管道的固有频率特性和静态失稳临界流速.根据梁模型横向弯曲振动模态函数,由端部支承和约束边界条件得到了其模态函数的一般表达式.根据动力方程的特征方程,具体分析了约束弹性刚度、流体压强、流速和管截面轴向力等参数对管道固有频率特性和静态失稳临界流速的影响.数值分析表明,约束弹性刚度的增大使管道的固有频率和失稳临界流速明显提高;流体流速、压强和管截面受到的轴向压力的增加使管道的固有频率和失稳临界流速降低.当管道的固有频率和失稳临界流速较低时,可以通过增加端部约束的方法来提高.

  • 标签: 输流管道 简支 弹性约束 固有频率 临界流速
  • 简介:柔性飞行器在飞行过程中容易发生大变形,这种变形将导致机翼甚至整个飞行器的气动弹性和飞行动力学特性发生变化,特别是对稳定性的影响.本文采用三段式刚体假设,以变上反角的方式来描述机翼的展向弯曲变形,对一类飞翼式柔性飞行器进行了纵向动力学建模,并进一步分析了操纵面、推力和迎角与上反角的关系,以及变上反角对飞行稳定性的影响.结果表明,在保持速度和高度不变的情况下,稳定性受上反角的影响比较明显,如果变形过大,飞行器将变为动不稳定,且短周期模态不能保持.因此,为了保持飞机的纵向稳定性,必须要控制飞机的变形.

  • 标签: 柔性飞行器 上反角 动力学建模 稳定性
  • 简介:针对转子—轴承系统中滚动球轴承的动力学相似问题,提出一种考虑非线性振动特性的轴承系统相似模型建立方法.首先,建立滚动球轴承整体的非线性振动微分方程,运用积分模拟法推导了轴承整体的非线性振动特性相似关系,并结合滚动球轴承的动力学相似关系得到滚动球轴承系统的相似设计准则;其次,应用所得的相似准则,以深沟球轴承C204JUT为原型、6208为模型进行数值仿真实例计算,通过采用Newmark-β算法计算得到的分叉图分析了转速ω、径向载荷Fr、阻尼C及径向游隙γ大小对原型和模型轴承系统振动位移或速度响应的影响;最后,通过对比原型和模型的各参数(ω、Fr、C、γ)分叉图中分叉区间、趋于稳定运动参数值大小以及进入稳定周期运动时的稳态响应值大小验证相似准则的准确性和有效性.通过分析得到以下结论:1滚动球轴承非线性振动特性参数(如振动响应、结构阻尼等)相似关系可由轴承结构参数相似关系确定;2原型与模型非线性运动的分叉图形状一致,且模型能够很好的预测原型稳态振动响应,因此可将模型轴承用来预测原型轴承的非线性振动行为.

  • 标签: 转子—轴承系统 滚动球轴承 非线性特性 动力学相似
  • 简介:根据三维混沌系统Lorenz吸引子和Chen’s吸引子线性部分的系数特征,构造了一个三维非线性动力系统,并研究了其混沌动力学特征,包括相轨迹图、最大Lyapunov指数、Lyapunov指数谱和Poincare映射,这些特征都表明,该系统具有混沌吸引子。

  • 标签: 混沌反控制 三维混沌系统 LYAPUNOV指数 POINCARE映射
  • 简介:研究索拱结构中索受外激励作用下索拱之间非线性动力学问题.利用已建立的索拱结构非线性动力学耦合面内运动微分方程,采用Galerkin方法把索拱结构的面内运动方程进行离散,然后利用多尺度法对离散的运动方程进行摄动得到索主共振情况下的平均方程,研究在索受到外激励作用下索振动对拱的振动产生的影响,同时对索拱结构内共振时的稳定、分叉及混沌情况进行了分析.结果表明:索某阶频率与拱某阶频率接近时可能出现内共振现象,能量在索拱之间相互传递,原本静止的拱也可能出现共振现象,共振频域区间内索拱振动将出现跳跃、分叉及混沌等复杂的非线性动力学行为.

  • 标签: 索拱结构 非线性动力学 分叉 混沌
  • 简介:在高参数汽轮机组和航空发动机等旋转机械中,转子-密封中的气流激振力对转子非线性动力学特性的影响不容忽视.本研究中建立了转子-密封系统三维流场模型,应用计算流体动力学(CFD)软件对可压缩气流流场进行模拟计算,获得了密封流场特性.由流场计算结果进一步获得了Muszynska气流激振力模型中的相关经验系数,使得此模型更加适用于气流激振力的计算.在对转子一密封系统进行非线性动力学分析过程中应用幂级数展开形式建立了系统幂级数模型.利用平均法得到气流激振力的1:2亚谐共振分岔方程,进一步应用奇异性理论和Hopf分岔理论研究了系统1:2亚谐共振的转迁集和系统超临界Hopf分岔与亚临界Hopf分岔的存在条件.通过参数控制方法抑制了转子-密封系统出现亚临界分岔的出现,使得系统稳定性提高.本文的分析结果对工程设计和操作具有一定的指导作用和意义.

  • 标签: 转子动力学 气流激振力 亚谐共振 奇异性理论 HOPF分岔
  • 简介:建立随机风作用下高速列车动力学参数的可靠性优化设计方法.首先考虑自然风的脉动特性,采用Cooper理论和谐波叠加法模拟随车移动点的脉动风速,给出随机风作用下高速列车非定常气动载荷的计算方法.然后建立高速列车车辆系统动力学模型,计算高速列车的运行安全性,并基于可靠性理论,给出随机风作用下高速列车失效概率的计算方法.在此基础上,以高速列车动力学参数为优化设计变量,以失效概率和轮轴横向力为优化目标,采用多目标遗传算法NSGA—II进行动力学参数的自动寻优,建立随机风作用下高速列车动力学参数的可靠性优化设计模型.经可靠性优化计算,高速列车的失效概率由原始的0.4884降低为0.1406,轮轴横向力由原始的45.13kN降低为43.01kN.通过优化高速列车动力学参数可以显著改善随机风作用下高速列车的运行安全性.

  • 标签: 随机风 可靠性优化 动力学参数 失效概率 多目标遗传算法
  • 简介:将微分求积法(DifferentialQuadratureMethod,简称DQM)应用于输液管道的非线性动力学分析,采用此法研究了受非线性约束输液管道的分岔现象和混沌运动问题.从悬臂输液管道模型出发,利用微分求积法形成管道的动力学方程.以分岔图、相平面图、时间历程图和Poincaré映射等分析手段考察了系统参数(管内流速)变化对管道振动形态的影响.结果表明,在所研究的系统中存在出现倍周期分岔现象和混沌运动的参数区域,这与前人的研究成果具有一致性.这为一类结构的非线性动力响应问题提供了一种新的研究思路.

  • 标签: 输液管 分岔 混沌 微分求积法 非线性动力学 结构动力学