简介:定义在C^n中具有逐块光滑边界的有界域上光滑函数的一种积分表示,这种积分表示的特点是积分式中含有局部的全纯核,且含有可供任意选择的实参数p,2≤p<+∝,利用这个公式,我们可获得有界域上-↑a-方程的局部解和证明在含参数局部意义下存在一致估计。
简介:S^p(1≤p≤∞)空间为导数属于Hardy空间H^p的复平面单位圆盘D上所有解析函数组成的空间.令函数φ和φ是D上的解析函数且φ(D)D,则将算子W(φ,φ):f→φfoφ称为加权复合算子.文章给出了当1≤q≤p≤∞,φ∈S^∞时,加权复合算子W(φ,φ)从空间S^p到S^q上的有界性的充要条件.然后通过推广经典的Fejer-Riesz不等式证明了当1〈p≤∞时,S^p到圆盘代数A上的嵌入映射是紧的.
简介:考虑一类定义在闭凸集上的非线性半变分不等式问题,通过运用闭凸集上的临界点理论、Clarke次微分性质以及非光滑紧性条件等,得到了这类半变分不等式解的存在性.
简介:本文主要研究调和Bergman空间L_h~2(D)上以拟齐次函数为符号的两个小Hankel算子的有限秩换位问题.