学科分类
/ 10
190 个结果
  • 简介:本文建立了用定积分极限的一个公式,改进了已有的结果.

  • 标签: 极限 定积分
  • 简介:<正>二次函数作为初中数学的重要内容,它始终是中考的一个重要考点,一直受到命题人的青睐,而且题型越来越新,综合性越来越强,还常常以压轴题的面貌出现.近几年的中考试题中出现了一类把动态的最短距离问题综合到抛物线图形中,综合性更强,难度就更大了.如

  • 标签: 对称点 最短距离 顶点坐标 抛物线方程 二次函数 中考试题
  • 简介:树指标随机过程已成为近年来发展起来的概率论的研究方向之一.强偏差定理一直是国际概率论界研究的中心课题之一.本文通过构造适当的非负鞅,将Doob鞅收敛定理应用于几乎处处收敛的研究,研究给出了关于非齐次树上马氏链场滑动平均的若干强偏差定理.

  • 标签: 非齐次树 马氏链 强偏差定理
  • 简介:在G-度量空间中,获得了非线性压缩算子F:X×X→X满足混合-g-单调性质下的耦合叠合点结果.减弱了压缩条件,所得结果也是近期文献相关结果的推广.

  • 标签: 耦合叠合点 混合-g-单调性质 (α)-g-容许
  • 简介:把Banach空间上向量测度理论中的Vitali—Hahn—Saks—Nikodym定理推广到了更一般的局部凸空间上.进而给出局部凸空间上强可加向量测度列与一致强可加测度列的关系.

  • 标签: 局部凸空间 Vitali-Hahn-Saks-Nikodym定理
  • 简介:本文用实函数控制非线性泛函与非线性算予的新方法定义Γ—泛函与Γ—算子,推广了[1][2][3]的一条一致有界定理

  • 标签: φ—赋范空间 Γ—泛函 Γ—算子
  • 简介:利用概率度量空间中A—proper映射拓扑度的基本性质,在投影完备的Z—P—S空间中研究了非线性映射的不动点问题,得到了一些新的结果.

  • 标签: Z- P-S空间 A—proper映射 拓扑度 凸集
  • 简介:本文在半序度量空间中引进了g-可比较算子和耦合不动点和9-不动点这些新概念,研究了9-可比较算子的g-耦合不动点或g-不动点存在性问题,得到了几个存在性定理.所得结论推广了最近一些文献中的主要结果.

  • 标签: 半序度量空间 g-可比较算子 g-耦合不动点 修改的距离函数
  • 简介:利用范数假设条件给出了带扰动的m一增生算子的一些映射定理.其结果是:B+D  R(T+C)并且int(B+D) R(T+C)的类型.其中B、D是实Banach空间X的子集,算子T:X D(T)→2~X至少是m一增生的,扰动算子C:X D(C)→X至少是紧、demi一半连续或完全连续的.这些结果推广和改进了已有文献的有关结果.

  • 标签: M-增生算子 完全连续映射 demi-半连续映射 凝聚映射 一致凸空间
  • 简介:简化了用"常数变易"法常系数非齐次线性微分方程特解的过程,给出了二阶常系数非齐次线性微分方程特解的一般公式.并将该方法推广到对n阶方程的降阶,从而求其特解.此方法简单实用,且运算量小.

  • 标签: 常数变易法 微分方程 特解 降阶
  • 简介:给出了一类高阶非齐次线性微分方程(组)特解的矩阵解法.即由对应齐次微分方程(组)的n个特解以及非齐次微分方程(组)的自由项构成某线性方程组的增广矩阵,并对该增广矩阵进行初等行变,换,即可求得非齐次微分方程(组)特解的一种简便方法.

  • 标签: 高阶非齐次线性方程(组) 特解 常数变易法 增广矩阵 初等变换法
  • 简介:通过选择适当的Banach空间并利用Leray-Schauder非线性抉择对于含各阶导数的非线性弹性梁方程u(4)(t)=f(t,u(t),u′(t),u″(t),u(t)),0t1,u(0)=u′(1)=u″(0)=u(''')(1)=0.建立了一个解的存在定理.在材料力学中,该方程描述了一端简单支撑,另一端被滑动夹子夹住的弹性梁的形变.这个存在定理说明只要非线性项满足某种线性增长条件该方程至少有一个解.

  • 标签: 非线性弹性梁方程 边值问题 存在性
  • 简介:本文研究一个可靠机器、一个不可靠机器与只容纳一个部件的缓冲库构成的系统的时间依赖解的渐近行为.首先在我们已有的工作基础上指出该模型的主算子生成的C0-半群的本质增长界小于一个负数,由此推出0是该主算子的一级极点.然后用残数定理该系统研究中出现的投影算子的表达式.最后证明该模型的时间依赖解指数收敛于其稳态解.本文的思想和方法适用于一个可靠机器、一个不可靠机器与容纳有限个部件的缓冲库构成的系统.

  • 标签: 一个可靠机器 一个不可靠机器与一个缓冲库构成的系统 时间依赖解 C0-半群 本质增长界