简介:传统地形辅助导航适配区选择主要根据某一个地形特征参数的大小决定,因此不可避免地存在对地形适配性评判的不全面性。为了克服传统方法的缺点,提出了一种基于熵值法赋权灰色关联决策的地形辅助导航适配区选择方法,该方法综合考虑了地形标准差、粗糙度、地形高度熵及相关系数对适配区选择的影响。首先,利用计算得到的各特征参数值构建灰色决策矩阵;其次,对决策矩阵进行极差变换以及归一化处理得到灰色关联判断矩阵;最后,采用熵值赋权法客观计算各决策属性的权重,得到地形适配性综合评价指标。仿真结果表明,在评价值高的区域进行地形辅助导航,其匹配误差将更小。
简介:通过分析1维和2维线性插值可以推导出任意斜角直线坐标系下n维线性插值的一般计算公式以及有唯一解的条件,这一结论能够应用于三维温度场计算。可以将n维插值问题归结如下:已知n+1维空间中的n+1个点的坐标以及第n+2个点的n个坐标分量xn+2,1,xn+2,2,,xn+2,n,求解该点的第n+1个坐标分量xn+2,n+1。根据线性插值定义,第n+2个点位于前n+1个点所确定的n维超平面上。根据这一条件列写方程、求解方程可得到插值xn+2,n+1。n维插值问题有唯一解的条件是已知的n+1个点在n维空间中构成的多面体的体积不为0。推导过程在斜角直线坐标系中完成,因而结论具有较大普适性。
简介:为了提高标准Cubature卡尔曼滤波(CKF)的稳定性和鲁棒性,提出一种改进的多重渐消H∞滤波cubamre卡尔曼滤波算法。首先基于系统状态的可观测性给出多重渐消因子矩阵求解过程,提高滤波算法的稳定性,抑制滤波发散;其次,引入H∞鲁棒思想,构造多重渐消H∞滤波Cubature卡尔曼滤波器;最后,提出采用一种奇异值分解的矩阵分解策略代替标准Cubature卡尔曼滤波中的Cholesky分解,进一步提高算法的数值稳定性。实际GPS/INS组合导航实验表明,改进的多重渐消H∞滤波Cubature卡尔曼滤波算法不仅能有效抑制滤波发散提高算法的稳定性,而且对观测野值具有更高的鲁棒性;提出的新算法与标准CKF算法相比,XYZ三个方向的位置精度分别提高了55.8%,46.6%和39.7%。
简介:多路径误差是北斗导航定位系统高精度动态监测的主要误差源。针对北斗导航定位系统多路径误差的特性,结合广义特征值盲源分离方法的优势,提出一种基于参考信号的广义特征值盲源分离算法来削弱多路径效应的影响。首先将前一天的原始坐标残差序列通过奇异谱分析方法进行去噪,其结果作为初始参考信号;然后将当天的原始坐标残差序列进行经验模式分解方法分解,分解得到的IMF分量作为虚拟观测数据,利用广义特征值盲源分离算法获取当天多路径误差信号;最后,利用仿真数据和连续10天的实际观测数据进行试验分析,结果表明利用该方法建立的多路径误差改正模型能有效地了削弱多路径的影响,北、东、天三个方向精度分别提高了78.8%、35.3%、90.1%。提出的模型在一定程度上解决了固定多路径模型随着时间推移重复性减小且有效性降低的问题。