学科分类
/ 8
149 个结果
  • 简介:将斜拉桥的拉索和桥面抽象为带弹性支承的压弯弹性梁模型,并根据轴向受力梁的弯曲振动方程和哈密尔顿原理,建立了考虑拉索索力影响的单梁多索索梁结构-粱的动力学控制方程,应用传递矩阵法进行求解,并编制了求解程序.通过算例对影响桥面动力学特性的索的刚度、张拉力和桥面裂纹等因素进行了数值分析分析结果表明,在斜拉桥的施工阶段,随着梁的长度的改变,梁的刚度讯速下降,由于索对梁的支承作用使结构的刚度有一定的提高,而索的拉力对桥面作用的压力越来越大,轴向压力使结构的刚度降低越来越明显,另一方面轴向压力对桥面裂纹引起的刚度降低有一定的抑制作用.由此,在桥梁的建设应重视索力对桥面动力特性的影响.

  • 标签: 拉索 弹性支承 索梁 动力学建模理论 传递矩阵法 振动
  • 简介:转子系统的不对问题在旋转机械中非常普遍,是引起严重整机振动的主要原因之一.特别地,以先进涡扇发动机转子系统为代表的带有弹性支承、内外布置的多转子系统,其动力学特性具有特殊性,不对的理论问题与工程需求十分突出.本文首先针对两类不对问题(联轴器不对中和支点不对),评述了目前不对建模方法、不对中转子系统的动力学和振动特性方面的代表性研究成果.其次,针对航空发动机转子系统,详细综述了目前已有的套齿联轴器、弹性支承组件的动力学研究成果.在此基础上,作者针对其具体结构特征,进行了航空发动机转子系统不对成因与模式分类,初步建立了联轴器不对中和支点不对的转子系统动力学模型并进行了振动特性分析.

  • 标签: 转子系统 联轴器不对中 支点不对中 动力学模型 航空发动机转子系统
  • 简介:研究外部扰动力矩作用下航天器的混沌姿态运动,引入Deprit正则变量建立系统的Hamilton结构,应用Melnikov方法预测系统产生的稳定流形和不稳定流形的横截相交,得到系统产生混沌姿态运动的条件。研究表明:随着转子转动惯量的增加,引起系统出现混沌姿态运动的激励频率的范围逐渐减小。最后,对相空间轨线的数值模拟表明理论分析的可靠性。

  • 标签: 航天器姿态动力学 混沌 Melnilov方法 Deprit变量
  • 简介:针对现有轴承-转子系统动力学模型的不足,考虑非线性滚动轴承力、不平衡量、碰摩故障及陀螺效应,建立了滚动轴承-柔性对称碰摩转子系统非线性集中质量模型.通过数值计算与比较,结果表明:低转速下系雏响应主要表现为滚动轴承的变刚度振动,高转速下轴承变刚度振动的影响相对减弱,转子不平衡和碰摩故障对系统的影响逐渐增强,陀螺效应对高转速下对称转子的响应不容忽略.

  • 标签: 滚动轴承 碰摩故障 非线性响应 陀螺效应
  • 简介:用微分求积数值方法求解了轴向加速粘弹性梁的横向振动控制方程,其方程是一复杂的非线性偏微分方程.并在数值结果的基础上利用分叉分析了轴向定常加速度以及轴向加速度变化幅值对轴向加速粘弹性梁的非线性动力学行为的影响.

  • 标签: 非线性偏微分方程 数值解 混沌 分叉 微分求积法
  • 简介:连接界面的黏滑、摩擦行为不仅是引起结构刚度和阻尼非线性的主要原因,而且是结构无源阻尼的主要来源.Iwan模型能够较好地复现连接界面的黏滑、摩擦行为.本文采用时频域交替法(AlternatingFrequency/TimeDomainMethod,AFT)研究含Iwan非线性模型的单自由度振子系统的稳态响应.时频域交替法具有频域法求解线性系统响应的高效性和时域法判断非线性力的便捷性特点,采用离散傅里叶变换和傅里叶逆变换,在频域和时域内分别求解系统响应和对应的非线性恢复力,再反复迭代计算系统的稳态响应.将时频域交替法计算结果和中心差分法计算的结果进行对比,并研究激励幅值对系统非线性特征的影响.结果表明,时频域交替法计算的结果与中心差分计算的结果具有较好的一致性,且求解效率较高,计算耗时减少50%;随着激励幅值的增加,系统的能量耗散增加,刚度降低,固有频率降低.

  • 标签: 连接 迟滞非线性 Iwan模型 时频域交替法 稳态响应
  • 简介:分析磁流变阻尼器的时滞特征,时滞对单自由度磁流变控制系统影响基础上,将磁流变阻尼器应用于高速机车系统的振动控制.从理论角度分析了基于磁流变阻尼器的四分之一机车系统在主动控制下的时滞问题,并进一步探讨了主动控制下时滞对高速机车系统整车悬挂系统的影响.仿真分析了高速机车系统整车模型应用磁流变阻尼器后,在主动控制下的时滞影响.结果表明,能够快速反映的磁流变阻尼器并不能彻底消除控制系统的时滞问题.磁流变主动控制系统在较大时滞的影响下,高速机车振动加剧,安全性受到威胁,甚至失去控制.

  • 标签: 主动控制 时滞 高速机车 磁流变阻尼器
  • 简介:浦肯野神经元是小脑皮层唯一的输出神经元,其传入纤维主要包括来自橄榄核的盘状纤维和来自皮层颗粒神经元的平行纤维.基于与实际神经系统十分相似浦肯野神经元回路模型,本文研究了回路中三种神经元(浦肯野神经元,颗粒神经元,盘状纤维)的相位响应曲线(PRC)并结合它们各自的f-I曲线对来区分三种神经元的兴奋性;进而对不同类型的神经元之间的同步性进行分析,着重考察了不同神经元之间突触的电导系数与浦肯野神经元树突上的CaP电导系数的影响等,分析结果显示神经元之间同步性对于它们信息传递起着重要作用.

  • 标签: 浦肯野神经元 相位响应曲线 同步性 突触电导系数 CaP电导系数
  • 简介:把柔性梁的离散坐标法——有限段法扩展到规则柔性板,视柔性板为带关节柔性(刚度、阻尼)的多刚体系统,详细阐述了离散坐标法的基本思想、理论依据,采用牛顿-欧拉方法建立了动力学方程,借助通用有限元软件和动力学仿真程序验证了离散坐标法可以解决具有几何非线性变形的规则柔性板构件的多体系统动力学问题。

  • 标签: 离散坐标法 柔性板 多刚体模型 动力学方程
  • 简介:为全面了解和准确预测两质点动力学系统运动特性.本文以具有固定边界的两质点动力学系统为例,构建了用于研究双自由度质点运动系统的余量谐波平衡解程序.解程序融合了谐波平衡与同伦方法优势,其高阶近似仅依赖于初始谐波近似,不需要根据前一阶近似进行调整.研究结果表明:本文给出的2-阶近似频率比已有的方法结果更加精确,相对误差不同程度减小,相应的近似响应与数值解更加吻合.因此,余量谐波平衡方法可广泛应用于其它质点动力学问题研究.

  • 标签: 双自由度振动系统 余量谐波平衡 高阶近似 频率响应
  • 简介:针对传统数值方法求解微分-代数方程过程中经常遇到的违约问题,本文以空间太阳能电站太阳能接收器的简化二维模型为例,采用辛算法模拟了简化模型的展开过程,研究了辛算法在求解过程约束违约问题.首先,基于Hamilton变分原理,将描述简化二维模型展开过程的Euler-Lagrange方程导入Hamilton体系,建立其Hamilton正则方程;随后,采用s级PRK离散方法离散正则方程,得到其辛格式;最后,采用辛PRK格式模拟太阳能接收器的二维展开过程.模拟结果显示:本文构造的辛PRK格式能够很好地满足系统的位移约束.

  • 标签: 辛PRK格式 保结构 空间太阳能电站
  • 简介:研究了一种具有时滞反馈的磁悬浮轴承系统的暂态混沌现象.数值分析表明,在相当大的时滞取值区间内,该系统的最终稳态运动不仅对初始值极其敏感,而且对反馈环节的时滞也极其敏感.并对这种暂态混沌运动现象作了初步解释.

  • 标签: 时滞反馈 稳定性 暂态混沌 全局分叉 混沌运动 磁悬浮轴承系统
  • 简介:在二维映射神经元模型,同时施加高、低两种不同频率的刺激信号,以高频信号为调制信号,研究其对系统动力学特性的影响.仿真结果表明,通过调节高频信号的幅值为某一合适值,可以使得神经元膜电位对弱低频信号的线性响应达到最优,产生振动共振现象,从而证实了高频刺激信号能够帮助神经元探测和传导弱低频信号.另外,还研究了模型和信号参数对系统共振特性的影响.

  • 标签: 神经元 二维映射模型 振动共振 刺激信号
  • 简介:针对我国某一型号大型卫星液体燃料Cassini贮箱(腰为圆柱,两底为半球),应用有限元方法研究了微重环境下液体的小幅晃动问题和横向受迫晃动问题,采用Galerkin方法得到了系统的有限元离散方程;得到了晃动固有频率和等效力学模型参数.针对周期脉冲激励,推导了液体作用于贮箱壁的晃动力和晃动力矩计算公式并给出了数值计算结果和分析结论.

  • 标签: 微重力 液体晃动 等效力学模型 有限元 周期脉冲激励
  • 简介:本文引入自适应多尺度熵的方法,并结合当前常用的经验模型分解的方法,使得数据尺度能自适应的被获取.通过从原数据不断移除低频或高频成分,自适应多尺度熵能够在“从粗糙到精细”或是“从精细到粗糙”的尺度下用样本熵估计求得.模拟结果用来确认了其有效性,同时我们将其应用到脑死亡诊断,用来区分脑死亡病人和昏迷病人在脑电信号上的不同.

  • 标签: 脑电信号 脑死亡诊断 自适应多尺度熵 样本熵
  • 简介:一个可调节速度的皮带驱动的干摩擦振子系统,设其干摩擦力大小是常值且两个激励频率是谐调的,本文对这个简单的力学模型进行了研究,分析了Filippov系统可能出现的四种余维-1sliding分岔并给出数值模拟.分析表明:该系统具有极其丰富的sliding分叉现象,较小的激励频率易引起非光滑分岔现象.

  • 标签: 非光滑系统 余维-1sliding分岔 Filippov系统
  • 简介:滚动轴承的故障信号往往是微弱的周期信号,而混沌振子对特定频率的微弱周期信号十分敏感,可以有效地检测出故障信号.介绍了混沌振子的数学模型和基本检测原理,以及策动力临界阈值的确定方法.将混沌振子检测法应用于滚动轴承外圈、内圈和滚动体故障信号的检测,通过输出相图的变化来判断故障信号是否存在,有效地实现了对滚动轴承故障信号的检测.

  • 标签: 混沌振子 滚动轴承 不变矩 微弱信号 故障特征提取
  • 简介:研究了采用自适应模糊控制器抑制桁架结构振动时的主动杆数目与位置优化问题.通过定义输入能量相关矩阵优化了主动杆的数目.基于主动杆的控制能量配置准则,给出了主动杆优化配置的模型.研究基于整数编码的遗传算法用于大型离散体的作动器组合优化问题.最后针对挠性空间智能桁架结构的振动控制仿真,使用基于整数编码的遗传算法(GAs)优化主动杆位置.结果表明对于采用自适应模糊控制律的离散体结构振动控制是行之有效的.

  • 标签: 智能桁架 模糊控制 振动控制 整数编码 主动杆
  • 简介:针对俯仰运动贮箱液体的晃动用变分原理建立了一类新的Lagrange函数,以此为基础可以解析方式来研究俯仰运动贮箱液体的非线性晃动.首先将速度势函数φ在自由液面处作波高函数η的Taylor级数展开,从而导出自由液面运动学和动力学边界条件非线性方程组;然后用谐波平衡法(HBM)假设其解为各次主导谐波叠加的形式,并代入方程组得到含有未知系数相应多个代数方程式;最后用Broyden法对代数方程组求解.以无挡板开口二维、刚性矩形贮箱为例,研究了液体的大幅晃动,就液体晃动的幅值而言,在一定激励频率范围内,理论计算值与试验结果吻合较好,同时液面波高出现明显的零点漂移现象.

  • 标签: 矩形贮箱 非线性晃动 谐波平衡法 LAGRANGE函数 动力学模型 晃动控制方程
  • 简介:线弹性静力学中有最小势能原理和最小余能原理,但只适用于物体或结构在给定约束条件下处于稳定平衡状态的情况,而在一般情况下动力学问题不可能存在稳定平衡状态,因此在动力学领域中是否存在最小势能原理值得认真考虑.本文对动力学问题中存在最小势能原理的可能性进行了探讨,并以摆脱了"平衡态"和"稳定态"的限制的最小功耗原理为理论基础,导出了线弹性动力学的最小势能原理和最小余能原理.给出了计算实例,结果正确.因此在线弹性动力学存在瞬时意义下的最小势能原理和最小余能原理.但其含义与静力学的最小势能原理和最小余能原理并不相同.其主要区别在于:动力学的原理适用于不稳定过程之任一瞬时,其"最小"是指"当时(即该瞬时)所有可能值的最小".而静力学的最小势能原理则只适用于稳定平衡状态,其"最小"是指系统从不稳定最后达到稳定平衡的整个过程中所有"真实值的最小".即前者是"当时的最小",后者则是"全过程的最小".这两类变分原理可成为线弹性动力学各种变分直接解法的理论基础.

  • 标签: 最小势能原理 最小余能原理 弹性动力学 动力学问题 平衡状态 理论基础