简介:Throughthesamplesurveyofprimaryandjuniorhighschoolstudentsandteachersonstudents'physiquefromvariousprovincesandcitiesinChina,theresulthasshownthedeclineofstudents'physique.Therearemanyreasons.Forstudents,thereasonsaretheheavyacademicburden;lackofinterest,time,andknowledgeinphysicalexercise;andthatthehabitofexercisewasnotdeveloped.Forfamily,familyeducationremainsfocusingmoreonintellectualthanphysical,nutritionthanexercise,andignoringthepositionandroleofsportsinthefamily.Forschool,thereasonsarethelackofsupportforphysicaleducation,thelimitedsportsactivities,andthetediousacticitytype.Forcommunity,thesportsfacilitiesandfieldsareinsufficient,andthereexistsanunevendistributionbetweenruralandurban.Bymeansofimplementinglawsandregulationsofphysicaleducation,strengtheningschoolsportsinfrastructure,enrichingteachers'professionalknowledgeofphysicaleducation,stimulatingstudents'interestinphysicalexercise,andeliminatingtheblindunderstandingofphysicalhealthbyparents,wecanpromotestudents'physique.
简介:
简介:
简介:Researchindicatesthathighlevelsofsedentarybehavior(sittingorlyingwithlowenergyexpenditure)areadverselyassociatedwithhealth.Akeyfactorinimprovingourunderstandingoftheimpactofsedentarybehavior(andpatternsofsedentarytimeaccumulation)onhealthistheuseofobjectivemeasurementtoolsthatcollectdateandtime-stampedactivityinformation.OnesuchtoolistheactivPALmonitor.Thisthigh-worndeviceusesaccelerometer-derivedinformationaboutthighpositiontodeterminethestartandendofeachperiodspentsitting/lying,standing,andstepping,aswellassteppingspeed,stepcounts,andposturaltransitions.TheactivPALisincreasinglybeingusedwithinfield-basedresearchforitsabilitytomeasuresitting/lyingviaposture.WesummarisekeyissuestoconsiderwhenusingtheactivPALinphysicalactivityandsedentarybehaviorfield-basedresearchwithadultpopulations.ItisintendedthatthefindingsanddiscussionpointsbeinformativeforresearcherswhoarecurrentlyusingactivPALmonitorsorareintendingtousethem.Pre-datacollectiondecisions,monitorpreparationanddistribution,datacollectionconsiderations,andmanualandautomateddataprocessingpossibilitiesarepresentedusingexamplesfromcurrentliteratureandexperiencesfrom2researchgroupsfromtheUKandAustralia.
简介:Conventionalcameracalibrationthatemployscalibrationtargetsisacommonlyusedmethodtoacquireacamera'sintrinsicand/orextrinsicparameters.Thecalibrationtargetsareusuallydesignedasperiodicarraysofsimplehigh-contrastpatternsthatprovidehighlyaccurateworldcoordinatesystempointsandthecorrespondingimagepixelcoordinatesystempoints.Theexistingpixelcoordinateextractionalgorithmscanreachasub-pixellevel;however,theytreateachsinglepatterninoneimageasanindependentindividual,whichmakesitdifficulttofurtherimproveextractionaccuracy.Inthispaper,anovelmethodisproposedbyutilizingtheperiodicarrangementcharacteristicsofthecalibrationtargetpatternasaglobalconstrainttoimprovethecalibrationaccuracy.Basedonacamera'spinholemodel,theintersectionpointoftwofittedcurvesisusedasanoptimizedpixelpointtoreplacetheinitialone.Followingthepixelcoordinateoptimizationprocedures,experimentswereperformedusingrealdatafroma3Dlaserlinescannerandadynamicprecisioncalibrationtarget.Ourresultsshowthattherelativeerrorsofcamerahomographymatrixelementsobtainedbytheproposedoptimizationmethodwerereducedcomparedwiththecommonlyusedmethod.Theaveragecoordinatemeasurementaccuracycanbeimprovedbynearly0.05mm.Itisshownthattheproposedoptimizationmethodcanenhancethecameracalibrationaccuracy,especiallywhentheextractedpixelsareofpoorerprecision.
简介:ThereisnodoubtthatteacherquestioningisoneofthemostcrucialcomponentsinEnglishclassroomteaching.Itisanessentialandeffectivechannelforteacherstointeractandcommunicatewithstudents.Moreimportantly,itplaysanextremelypartininspiringstudentstothinkcriticallyandfosteringtheirproblem-solvingcapabilities.GiventhatteacherquestioningissosignificantinEnglishclassroomteaching,thepresentpaperwillmakeananalysisofteacherquestioningfromtheperspectiveofspeechacttheorywithanaimtogivingsomeconstructivepedagogicimplicationstoEnglishteachers.
简介:Toestablishafinancialearly-warningmodelwithhighaccuracyofdiscriminationandachievetheaimoflong-termprediction,principalcomponentanalysis(PCA),Fisherdiscriminant,togetherwithgreyforecastingmodelsareusedatthesametime.110A-sharecompanieslistedontheShanghaiandShenzhenstockexchangeareselectedasresearchsamples.And10extractivefactorswith89.746%ofalltheoriginalinformationaredeterminedbyapplyingPCA,whichobtainsthegoalofdimensionreductionwithout...
简介: