简介:人口统计数据空间化是人口信息与其他资源环境、社会经济等信息进行空间集成的基础.本研究对国内外人口统计数据空间化研究进行总结,归纳了水热条件、地形地貌、土地利用、交通廊道、夜间灯光等不同建模参考因素对人口空间分布的影响,并分析比较了10个主要的人口统计数据空间化模型,进而对当前人口统计数据空间化研究中存在的问题做了总结,并讨论未来的研究方向.综述认为人口统计数据空间化的研究将向数据获取多源化、建模因素综合化、模拟格网精细化、模型应用实用化等方向发展;目前需要改进的问题包括:1)统一的人口数据统计标准;2)人口结构特性相关的空间化,特别是流动人口的空间分布特征识别;3)城市街区尺度的空间化方法研究;4)多源数据与人口动态信息综合中的时相匹配;5)统一的空间化指标量化方法;6)模型参数优化与精度验证方法完善.
简介:AstochasticmodelfordailyprecipitationsimulationinChinawasdevelopedbasedontheframeworkofa′Richardson-type′weathergeneratorthatisanimportanttoolinstudyingimpactsofweather/climateonavarietyofsystemsincludingecosystemandriskassessment.ThepurposeofthisworkistodevelopaweathergeneratorforapplicationsinChina.Thefocusisonprecipitationsimulationsincedeterminationofotherweathervariablessuchastemperatureisdependentonprecipitationsimulation.AframeworkoffirstorderMarkovChainwithGammaDistributionfordailyprecipitationisadoptedinthiswork.Basedonthisframework,fourparametersofprecipitationsimulationforeachmonthat672stationsalloverChinaweredeterminedusingdailyprecipitationdatafrom1961to2000.Comparedwithpreviousworks,ourestimationfortheparameterswasmadeformorestationsandlongerobservations,whichmakestheweathergeneratormoreapplicableandreliable.Spatialdistributionsofthefourparametersareanalyzedinaregionalclimatecontext.Theseasonalvariationsoftheseparametersatfivestationsrepresentingregionaldifferencesarediscussed.Basedontheestimatedmonthlyparametersat672stations,dailyprecipitationsforanyperiodcanbesimulated.A30-yearsimulationwasmadeandcomparedwithobservationsduring1971-2000intermsofannualandmonthlystatistics.Theresultsaresatisfactory,whichdemonstratestheusefulnessoftheweathergenerator.