简介:在这份报纸,我们在公制的Lp(R)(1p)得到平均-B宽度和Sobolev班Brp(R)的无限的维的-G宽度的准确价值并且获得准确(N)和强壮的asymptotic(>1)在公制的Lq的Sobolev牛肉熏香肠班Wrpq(R)的无限的维的-G宽度的结果在公制的Lqp(R)(1qp)的(R)和它的双盒子Wrp(R)。
简介:一个r-klee-图递归定义为一个r+1阶完全图或者通过用一个r阶完全图替换已知的r-klee-图G′中的一个顶点所得到的图.本文主要研究了r-klee-图的Hamilton-连通性和着色问题.我们证明了:每一个r-klee-图是Hamilton-连通的和它的色数是r;如果r是奇数,则它的边色数是r;如果r是偶数,则它的边色数是r+1.
简介:如果对一个简单图G的每一个与G的顶点数同奇偶的独立集1,都有G-I有完美匹配,则称G是独立集可削去的因子临界图.如果图G不是独立集可削去的因子临界图,而对任意两个不相邻的顶点x与y,G+zy是独立集可削去的因子临界图,则称G是极大非独赢集可削去的因子临界图.本文刻画了极大非独立集可削去的因子临界图.
简介:对于给定的图H,若存在可图序列π的一个实现包含H作为子图,则称π为蕴含H-可图的.Gould等人考虑了下述极值问题的变形:确定最小的偶整数σ(H,n),使得每个满足σ(π)≥σ(H,n)的n项可图序列π=(d1,d2,…,dn)是蕴含H-可图的,其中σ(π)=∑di.本文刻划了蕴含K4+P2-可图序列,其中K4+P2是向致的一个顶点添加两条悬挂边后构成的简单图.这一刻划导出σ(K4+P2,n)的值.